

Objective of Research Project

- Objective:
 - Create a national dataset that maps flood susceptibility or potentially floodprone areas based on hydro-geomorphic and meteorological data and flood history
- Why
 - To help understand areas potentially at risk of flooding
 - To identify areas that could be prioritized for high-resolution data collection and flood hazard mapping, support FHIMP
 - This research supports a CIRNAC-led climate risk index tool
- How
 - Using machine learning models of classification and regression algorithms to identify patterns in areas where flooding has historically occurred

Workflow

 Develop a method to create a national dataset that maps susceptibility to flooding (or potentially flood prone areas), based on hydro-geomorphology and meteorological data and historic record of flood events

2

6

2. Determine the Important datasets

 Through recursive feature elimination (rfe –caret) and Variable Selection using Random forest

Single vs multi-regional models (Random Forest)

	Regional Models (parRF) local-variables/national factors						Single Model
	вс	AB	MB	ON	NB	Average	National Model
Accuracy	0.96/0.96	0.94/0.94	0.82/0.82	0.89/0.92	0.99/0.99	0.91/0.93	0.92
Карра	0.93/0.93	0.88/0.88	0.64/0.64	0.77/0.84	0.97/0.98	0.84/0.85	0.83
Sensitivity	0.95/0.93	0.91/0.91	0.79/0.79	0.91/0.92	0.98/0.98	0.91/0.91	0.91
Specificity	0.98/0.99	0.97/0.97	0.85/0.85	0.85/0.92	0.99/1.0	0.93/0.95	0.9
Precision	0.98/0.98	0.98/0.97	0.81/0.81	0.89/0.92	0.99/1.0	0.91/0.90	0.9
F1	0.95/0.93	0.91/0.91	0.79/0.79	0.91/0.92	0.98/0.98	0.91/0.91	0.91
AUC-ROC	0.97/0.97	0.96/0.96	0.86/0.86	0.92/0.93	0.99/0.99	0.94/0.94	0.97
Natural Res Canada	ources Ressourc Canada	es naturelles					Cana

8

Single National Model

- RF & MARS somewhat similar
 - Though MARS higher values
- NNET model:
 - good where the training data exists
 - relatively low elsewhere

Natural Resources

Canada

- SVM:
 - Rings north of training/test sites

Ressources naturell

Canada

7

Comparison of prediction to historic events

- Using multi-regional, single national model and ensemble model approach
 - (i) Labelled points (used in training/test sets), (ii) data in the near-by surrounding sites, and (iii) All data across the country

Results : Compared to historic events

Conclusions

- Several challenges exist when trying to develop a flood susceptibility model for a country as large and diverse as Canada:
 - sparse training data
- Findings:
 - single national model produced better predictions than the regional, multiregion model
 - However, when a single ML model was extrapolated across the whole of Canada, there were limitations found in several models, including SVM, NN, MLP and RF.
 - An ensemble approach, which combined 5 models of different categories and combined them using a generalized linear model (GLM), ultimately produced the best flood susceptibility map, in comparison to historic flood maps

9