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Abstract: The aim of our study is the modeling at field level of soil erodibility (K factor) by water 

(rainfall and irrigation) on traditional tillage (CoT) and without tillage (NoT) plots cultivated with 

Helianthus annuus utilizing plots observations, soil sampling laboratory analyzes, GIS, precision ag-

riculture (PA) and Kriging geostatistical modeling. A split-plot layout consisting of 4 handlings × 3 

replicates of trial blocks (with a south-east facing 7.5% slope) was used. Grid template surface soil 

cores (0.0–5.0 cm) samples were taken to characterize textures (sandy, silty, clayey, very fine sandy 

and gravely), organic matter (OM) concentrations, soil’s microstructure and water permeability cat-

egories. A GPS satellite tracker system was utilized to define the sampled positions and 40 soil cores 

were air-dried and sieved with a 2 mm sieve to identify soil’s mechanical microtexture using Bouy-

oucos methodology. Organic matter extracted by chemical oxidation with 1 mol L−1 K2Cr2O7 and 

titration of the remaining reagent with 0.5 mol L−1 FeSO4. Soil’s microstructure and water permea-

bility categories have been defined following the USDA classification system. Soil erodibility by 

water modeling of K factor (Mg ha h ha−1 MJ−1 mm−1) was derived according to the Wischmeier 

nomograph method by incorporating it in a developed GIS geospatial model using Kriging geosta-

tistics. Statistical results of the ANOVA test (p = 0.05) among soil erodibility datasets showed signif-

icant differences between the 2 tillage systems, as well as between the 4 management treatments. 

Moreover, it was found that without tillage (NoT) plots and treatment-Without Tillage plus Vege-

tative Coverage were the best tillage and agricultural practices for hillslope farmfields, and can be 

regarded as potential ecological good agricultural practices to curb soil erodibility by water, reduce 

runoff risk and to maintain soil’s environment and its beneficial nutrients. 

Keywords: soil’s erodibility by water (rainfall/irrigation); tillage; soil analyses; spatial analysis;  

precision agriculture and kriging geostatistical models; Helianthus annuus crop; organic matter. 

 

1. Introduction 

Erosion of soil is the phenomenon of soil particles being separated and transported 

by water or wind [1]. Nowadays, it is a major issue for agricultural growth and food safety 

at peripheral, country and world levels [2,3]. Greece has a developed agricultural sector 

with a declining farmers population and heavy farming operations that have led to in-

creased erosion of soils. In an effort, to study new ways to decrease soil erosion and pre-

serve precious soil reserves, several erosion models have been successfully deployed and 

widely tested all over the world. Soil’s erosion and risk are considered major problems of 

the environment in Greece. Soil’s erodibility (K) is a fundamental parameter in erosion 
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forecasting methods like the USLE (Universal Soil Loss Equation) [4] and RUSLE (Revised 

USLE) [5,6]. The K factor is a complicated soil attribute which is the easiness of the soil 

been degraded by water splashing during a rainfall or irrigation (mostly with sprinklers 

or waterjets) event or by water run-off or their combination [3]. It is considered hard to 

capture the principal variables of erosion forecasting models, like soil’s erodibility, repre-

sented as K [7]. To overcome this issue, implicit methods are used to assess the K factor 

and allow these studies to be carried out [8]. The aim of our study is the geospatial mod-

eling at field level of soil erodibility by water on traditional tillage (CoT) and without 

tillage (NoT) in Helianthus plots utilizing observations, soil laboratory analyzes, precision 

agriculture, Kriging geostatistics and GIS mapping under climate change in Greece. 

2. Materials and Methods 

2.1. Study Area and Site Description 

The trial was carried out in the agricultural hilly erosion-prone area of the Gaiopolis 

University Campus-University of Thessaly (Larissa in Central Greece). The region has a 

moderate continental climate with a hot arid summer and a gentle winter, that is charac-

terized as Csa (Koeppen climate classification) [2] and is further classified as XERIC MOIS-

TURE REGIME [9], with an average annual temperature and precipitation of 17.35 °C and 

380.75 mm, respectively. The highest and lowest average monthly precipitation were 

pr(hi) = 113.40 mm (May) and pr(low) = 12.20 mm (November), respectively. The cumu-

lative precipitation was 652.40 mm year−1. A split-plot layout consisting of 4 handlings 

(treats) × 3 replicates of trial blocks (with a south-east facing 7.5% slope) was used. Heli-

anthus annuus plants were seeded to facilitate plant coverage in a number of treatments: 

(a) A-treatment was traditional tillage (CoT) with vegetative coverage (VC), (b) B-treat-

ment was CoT without vegetative coverage (NoVC), (c) C-treatment was without tillage 

(NoT) with vegetative coverage (VC), and (d) D-treatment was without tillage (NoT) and 

without vegetative coverage (NoVC). The dimensions of the 12 experimental field plots 

were 6 m × 22.1 m downslope, with an overall plot area of 1591.2 m2. 

2.2. Soil Sampling, Laboratory Analyses and Classification 

Grid template surface soil cores (0.0–5.0 cm) samples were taken to characterize tex-

tures (sandy (Sa), silty (Si), clayey (Cl), very fine sandy (vfS) and gravely (Gr)), organic 

matter (OM) concentrations, soil’s microstructure and water permeability categories. A 

GPS (Global Positioning System) satellite tracker 2ystem was utilized to define the sam-

pled positions and 40 surface soil cores were air-dried and sieved with a 2 mm sieve to 

identify soil’s mechanical microtexture using Bouyoucos methodology [10,11]. Organic 

matter extracted by chemical oxidation with 1 mol L−1 K2Cr2O7 and titration of the remain-

ing reagent with 0.5 mol L−1 FeSO4 [11]. Soil’s microstructure (which is the assemblage of 

soil particles and agglomerates into identifiable particles or granules) categories [9] and 

water permeability categories have been defined following the USDA classification sys-

tem [9,12]. Soil erodibility by water modeling of K factor (Mg ha h ha−1 MJ−1 mm−1) was 

derived according to the Wischmeier nomograph method [4,12–14], by incorporating it in 

a developed GIS geospatial model using Kriging geostatistics. The K factor equation (1) 

[4,12–14] was derived for soils having less than 70% silt plus vfS: 

  𝐾 =  ⌊
(2.1 × 10−4 (12 −  𝑂𝑀)𝑀1.14  +  3.25(𝑆 −  2)  +  2.5(𝑃 −  3))

100
⌋  ×  0.1317 (1) 

where K = soil erodibility of the USLE method (Mg ha h ha−1 MJ−1 mm−1), M = product of 

percentage of silt + Vfs and of all soil fractions other than clay (0.05 mm < sand < 0.1 mm, 

0.002 mm < silt < 0.05 mm, clay < 0.002 mm), OM = soil’s organic matter concentration (%), 

S = soil’s microstructure category, and P = soil’s water permeability category. 
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2.3. Statistical and Geostatistical Data Analysis, Soil Erodibility Modeling and Methodology 

Data analysis was performed using the IBM SPSS v.26 [15–21] statistical software 

package. The results are means of the samples analyses and measurements. Analysis of 

variance (ANOVA) [14–29] was used to assess tillage systems and treatment effects. The 

statistical Levene test of Homogeneity of Variances [14–22] was used in order to validate 

the assumption of variance equality of soil erodibility data groups. Mean separation was 

made using LSD test [14–22] when significant differences (p = 0.05) between treatments 

were found. In the present study, we used geostatistics (Kriging) and precision agriculture 

[14,16–19,21–23,27] for modeling and GIS (Geographical Information System) mapping of 

soil textural classes, organic matter content, soil structure and permeability categories re-

spectively and also for the soil erodibility. Using the modeled parameters (which were 

digitally mapped in a GIS environment) as input factors, we delineated soil’s erodibility 

field map with the aid of geospatial analysis, precision agriculture and the use of a GIS 

software (ArcGIS © ). In addition, the evaluation of K-factor equation requires analysis of 

residual errors, the difference between predicted and observed values and prediction 

characterization between over- and underestimates. To that end, we used the statistical 

parameters described by other studies [14–19,21–23,27,30,31], such as the equations for the 

Mean Prediction Error (MPE), the Root Mean Square Error (RMSE), the Mean Standard-

ized Prediction Error (MSPE) and the Root-Mean-Square Standardized Error (RMSSE). 

Soil erodibility modeling results of the plots were used in order to extract the K data for 

the validation procedure using the training and test soil and K datasets. 

3. Results and Discussion 

Soil erodibility depends on 4 parameters: soil texture, soil structure, permeability and 

organic matter concentration. Soil analyses results showed that sand and very fine sand 

contents ranged 26.47–46.34% and 21.73–22.08% respectively. The mean silt and clay con-

tents were 19.91% and 20.22% respectively. The soil’s organic matter [14,17–19,21–23,27] 

modeling results are depicted in Figure 1a–c. Its concentration classes range from 1.44% 

to 3.22% (Figure 1b), indicating soil’s OM with medium to high content. 

 

Figure 1. (a) Modeling outcomes on a soil’s organic matter digital GIS map of the Helianthus plots, 

(b) Diagram of soil’s organic matter classes vs. percentage of OM area, and (c) Semivariogram of the 

model. 
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Soil’s organic matter geospatial analysis showed that 34.887% of the soil plots area 

have medium OM content (1.44–2.00%), while the rest 65.113% have high OM content 

(2.00–3.22%). The modelling and statistical outputs revealed that K factor over the meas-

uring time span ranged from a min 0.025 to a max 0.043 Mg ha h ha−1 MJ−1 mm−1 (average 

K = 0.034, StdD = 0.0062). Soil’s characteristics of the Helianthus plots were sampled, ana-

lysed and digitised in accordance to their GPS field positions in the WGS 1984 geographic 

coordinate system (CS) and stored in a geodatabase. Soil’s parameters, tillage and treat-

ment datasets were projected to the WGS 1984 UTM Zone 34N CS (Greece’s zone). The 

outputs of the geospatial erodibility modeling are visualized in a digital GIS map of the 

field in Figure 2a–c. Furthermore, the outcomes of the erodibility categories in relation to 

the percentage of the K factor area are illustrated in Figure 2b. The validation of the geo-

spatial soil erodibility modeling (Figure 2c) resulted in the following geostatistical out-

comes: Mean prediction error (MPE) = −0.000000924, root mean square error (RMSE) = 

0.00598019, mean standardized prediction error (MSPE) = −0.00518898 and root mean 

square standard error (RMSSE) = 1.0498154. These results are highly acceptable consider-

ing that the MPE, RMSE and MSPE scores should be close to zero for an optimal forecast 

and the RMSSE scores should be close to unity, suggesting an accurate estimate of the 

forecast variability. The above-mentioned results confirmed the reliability and accuracy 

of the generated soil’s erodibility digital GIS map for the trial hillslope field of Helianthus 

annuus. Furthermore, these outcomes have proven that the ordinary Kriging exponential 

model demonstrated a good performance and is regarded as highly appropriate for geo-

spatial modeling and mapping of the K-factor as well as other soil parameters (clay, sand, 

silt, organic matter, very fine sand, etc.). The output of ANOVA test (p = 0.05) between soil 

erodibility dataset in relation to tillage method showed that the 2 tillage systems [tradi-

tional (CoT) and without tillage (NoT)] differ significantly in certain manner, so it was 

necessary to further investigate the pattern of their differences. Therefore, in order to val-

idate the hypothesis of equality of variance for the erodibility dataset, the Levene statisti-

cal test for homogeneity of variances was conducted. 

 

Figure 2. (a) Soil’s erodibility modeling results on a digital GIS map of the Helianthus plots, (b) 

Diagram of soil’s erodibility categories vs. percent of K factor area, and (c) Semivariogram of the 

model. 
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The outcomes of the Levene statistics for soil erodibility on tillage systems and treat-

ments established that the K factor homogeneity variances across tillage systems (CoT and 

NoT) and also across treatments (A, B, C and D) data groups are not significantly different 

meaning that the assumption of variance equality was found true. Since the assumption 

was found true, ANOVA and LSD (Least Significant Differences) statistical tests were per-

formed to assess treatment effects and mean separation of treatment effects. The best till-

age system in Central Greece for hilly farmfields on high erosion risk with a slope ≥ 7.5% 

downslope was found to be tillage NoT. The results of ANOVA (p = 0.05) showed that 

treatments (A, B, C and D) data groups of soil erodibility are significantly different (Sig. = 

0.029). The best treatment in order to curb soil erodibility (K factor) and preserve soil’s 

environment was found to be treatment C [(NoT-VC) (without Tillage with Vegetative 

Coverage)] for hilly farmfields on high erosion risk with a slope ≥ 7.5% downslope. 

4. Conclusions 

The prediction errors result of geospatial and geostatistical modeling validation for 

soil erodibility GIS mapping confirmed the validity and precision of the produced K factor 

digital GIS map of the Helianthus annuus trial plots. These results proved that the ordinary 

kriging exponential model performed well, and it is considered as very suitable for soil 

erodibility and other soil parameters (clay, sand, silt, organic matter, very fine sand, etc.) 

modeling and digital mapping. Considering the ANOVA test results of tillage systems 

and treatment effects on soil erodibility, the best tillage system found was the NoT (with-

out tillage) and the best treatment was C [(NoT-VC) (without Tillage with Vegetative Cov-

erage)] for hilly farmfields on high erosion risk with a slope ≥ 7.5% downslope. These can 

be regarded as potential ecological good agricultural practices to curb soil erodibility by 

water, reduce runoff risk and to maintain soil’s environment and its beneficial nutrients. 
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