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Abstract 

The concept of bond-based quadratic indices is generalized to codify chemical structure information for 

chiral drugs, making use of a trigonometric 3D-chirality correction factor. In order to evaluate the 

effectiveness of this novel approach in drug design, we have modeled several well-known data sets. In 

particularly, Cramer’s steroid data set has become a benchmark for the assessment of novel QSAR 

methods. This data set has been used by several researchers using 3D-QSAR approaches. Therefore, it is 

selected by us for the shake of comparability. In addition, to evaluate the effectiveness of this novel 

approach in drug design, we model the angiotensin-converting enzyme inhibitory activity of 

perindoprilate’s σ-stereoisomers combinatorial library, as well as codify information related to a 

pharmacological property, highly dependent on the molecular symmetry, of a set of seven pairs of chiral 

N-alkylated 3-(3-hydroxyphenyl)-piperidines, which bind σ-receptors. The validation of this method is 

achieved by comparison with earlier publications applied to the same data sets. The non-stochastic and 

stochastic bond-based 3D-chiral quadratic indices appear to provide a rather interesting alternative to 

other more common 3D-QSAR descriptors. 

 

Keywords: non-stochastic and stochastic bond-based 3D-chiral quadratic indices, 3D-QSAR, angiotesin-

converting enzyme inhibitor, σ-receptor antagonist, binding affinity steroid. 
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1. Introduction 

The asymmetry of atomic configurations is an important feature in determining the physical, chemical 

and biological properties of chemical substances [1]. In the literature, the asymmetric atoms are often 

referred to as chiral atoms, and molecules containing chiral atoms are referred to as chiral molecules. 

Two molecules with identical chemical formulas, but different states of symmetry of an only atom, are 

referred to as enantiomers, although may also be referred to as enantiomorphs, optical isomers or optical 

antipodes [2]. The molecules with identical 2D structural formulas containing more than one asymmetric 

atom are referred to as σ-diastereomers [3]. Usually enantiomers exhibit different chemical and physical 

properties, as well as different biological activities [4]. The case of thalidomide is an example of a 

problem that was, at least, complicated by the ignorance of stereochemical effects [5]. Thus, whenever a 

drug is obtained in a variety of chemically equivalent forms (such as a racemate), it is both good science 

and good sense to explore the potential for in vivo differences between these forms. In connection with 

this, the regulation of the US Food & Drug Administration (FDA) requires a detailed study of both 

enantiomers [6]. 

In view of the great importance of molecular chirality in chemistry, biochemistry, pharmacology, etc., 

much effort has been made to design theoretical methods by which enantiomeric species could be 

distinguished [1, 2, 4, 7-14]. Nevertheless, rather few of these descriptors have been reported in the 

literature to date, although the necessity of a more serious effort in this direction has been recognized by 

researchers in the area [15]. Among the chiral topological indices (CTIs) published in the literature, 

Estrada and Uriarte mentioned some in a recent review about topological indices (TIs) [15]. Pyka [16-

18], as well as Gutman and Pyka [19] rationalized some of these indices from a mathematical point of 

view. The relationships between these indices and the Wiener index were established. Moreover, Schultz 

et al.[13] modified a series of TIs in order to introduce information regarding the chirality of 

stereocenters in the molecules.  

Some years ago, Buda and Mislow distinguished between two classes of measures [20]. In the first class, 

‘the degree of chirality expresses the extent to which a chiral object differs from an achiral reference 

object’. In the second one, ‘it expresses the extent to which two enantiomorphs differ from one another’. 

Either method yields a single real value, usually an absolute quantity which is the same for both 

enantiomorphs. A different idea was to incorporate R/S labels into conventional topological indices [13]. 

Derived chirality descriptors were correlated with biological activity by de Julián-Ortiz et al. [10], 

Golbraikh et al. [1]  and more recently by Díaz et al. [21]. One of the first approaches in this field was 

introduced by de Julián-Ortiz et al. [10], in a study of the pharmacological activity of different pairs of 
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enantiomers on dopamine D2 and the σ-receptor. Fortunately, the so-called chiral topological indices 

(CTIs) are inexpensive in terms of computational time, in comparison to grid dependent methods like 

CoMFA [22]. Anyways, when chirality is considered, many 3D-TIs become ‘hard to interpret’ in 

physical terms. For example, Golbraikh, Bonchev, and Tropsha’s work generated even complex 

numbers that are incompatible with standard statistical software [1]. 

In two recent works of Aires-de-Sousa and Gasteiger [4, 8], two different kinds of chirality codes were 

designed, named “conformation-independent chirality code” (CICC) and “conformation-dependent 

chirality code” (CDCC). The chirality code is a molecular transformation that represents the chirality of 

a molecule by using a spectrum-like, fixed-length code and includes information about the geometry of 

chiral centers, properties of the atoms in the neighborhoods, and bonds lengths. The code distinguishes 

between enantiomers and yields descriptors with symmetrical values for opposite enantiomers [14]. 

Recently, a novel scheme to the rational –in silico- molecular design and to QSAR/QSPR has been 

introduced by our research group: TOMOCOMD (acronym of TOpological MOlecular COMputer 

Design). It calculates several new families of 2D, 3D-Chiral (2.5) and 3D (geometric and topographical) 

non-stochastic and stochastic atom- and bond-based molecular descriptors, based on algebraic theory 

and discrete mathematics. They are denoted quadratic, linear and bilinear indices, and have been defined 

in analogy to the quadratic, linear and bilinear mathematical maps [23-27]. These approaches describe 

changes in the electron distribution with time throughout the molecular backbone, and they have been 

successfully employed in the prediction of several physical, physicochemical, chemical, biological, 

pharmacokinetic and toxicological properties of organic compounds [28-38]. Besides, these indices have 

been extended to consider three-dimensional features of small/medium-sized molecules based on the 

trigonometric 3D-chirality correction factor approach [39-43]. In earlier publications, we have obtained 

rather promising results when stochastic and non-stochastic atom-based 3D-chiral quadratic, linear and 

bilinear indices were applied to three of the most commonly used chiral data sets [39-43]. 

The present report is written with two objectives in mind. First, to extend the non-stochastic and 

stochastic bond-based 2D quadratic indices in order to codify chirality-related structural features and 

second, to compare the achieved results with those obtained by other methods. The problems of the 

prediction of corticosteroid-binding globulin (CBG) affinity of the Cramer’s steroid data set, σ-receptor 

antagonist activities and the classification of ACE (angiotesin-converting enzime) inhibitors are selected 

as illustrative examples of applications of the method. These examples will be used as a matter of 

comparison with other CTIs, 3D and quantum chemical descriptors as well.  
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2. Theoretical Scaffold 

The basis of the extension of quadratic indices which will be given here, is the edge-adjacency matrix, 

considered and explicitly defined in the chemical graph-theory literature [44, 45], and rediscovered by 

Estrada as an important source of new Molecular Descriptors (MDs) [46-51]. In this section, first we 

will define the nomenclature to be used in this work, then, the atom-based molecular vector ( x ) will be 

redefined for bond characterization, using the same approach as previously reported and, finally, some 

new definition of bond-based non-stochastic and stochastic quadratic indices, with its peculiar 

mathematical properties, will be given.  

2.1 Background in Edge-Adjacency Matrix and New Edge-Relations: Stochastic Edge-Adjacency 

Matrix. 

Let G = (V, E) be a simple graph, with V = {v1, v2, ..., vn} and E = {e1, e2, ...em} being the vertex- and 

edge-sets of G, respectively. Then, G represents a molecular graph having n vertices and m edges 

(bonds). The edge-adjacency matrix E of G (likewise called bond-adjacency matrix, B) is a symmetric 

square matrix, whose elements eij are 1 if and only if edge i is adjacent to edge j [46, 49, 52]. Two edges 

are adjacent if they are incidental to a common vertex. This matrix corresponds to the vertex-adjacency 

matrix of the associated line graph. Finally, the sum of the ith row (or column) of E is named the edge 

degree of bond i, δ(ei) [46-52]. 

On the other hand, by using the edge (bond)-adjacency relationships, we can find other new relation for 

a molecular graph that will be introduced here. The kth ‘stochastic’ edge-adjacency matrix, ESk can be 

obtained directly from Ek. Here, ESk = [kesij] is a square table of order m (m = number of bonds), and the 

elements kesij are defined as follows: 
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where keij are the elements of the kth power of E, and the SUM of the ith row of Ek is named the k-order 

edge degree of bond i, kδ(e)i. Note that the matrix ESk in Eq. 1 has the property that the sum of the 

elements in each row is 1. An mxm matrix with nonnegative entries having this property is called a 

“stochastic matrix” [53]. Recently, some authors have introduced the stochastic approach to atomic 

relationships to derive new MDs [54-59]. 

2.2 Chemical Information and Bond-Based Molecular Vector 

The atom-based molecular vector ( x ), used to represent small-to-medium sized organic chemicals has 

been explained elsewhere in some detail [23, 60]. In a manner parallel to the development of x , we 

present the expansion of the bond-based molecular vector ( w ). The components ( w ) of w are numeric 
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values, which represent a certain standard bond property (bond label). Therefore, these weights 

correspond to different bond properties for organic molecules. Thus, a molecule having 5, 10, 15,..., m 

bonds can be represented by means of vectors, with 5, 10, 15,..., m components, belonging to the spaces 

ℜ5, ℜ10, ℜ15,..., ℜm, respectively, where m is the dimension of the real set (ℜm). This approach allows us 

to encode organic molecules, such as 2-hydroxybut-2-enenitrile, through the molecular vector w = 

[wCsp3-Csp2, wCsp2=Csp2, wCsp2-Osp3, wH-Osp3, wCsp2-Csp, wCsp≡Nsp]. This vector belongs to the product space ℜ6. 

These properties characterize each kind of bond (and bond-type) in the molecule. Diverse kinds of bond 

weights (w) can be used, in order to codify information related to each bond in the molecule. These bond 

labels are chemically meaningful numbers such as standard bond distance [61, 62], standard bond dipole 

[61, 62] or even mathematical expressions involving atomic weights such as atomic log P [63], surface 

contributions of polar atoms [64], atomic molar refractivity [65], atomic hybrid polarizabilities [66], 

Gasteiger-Marsilli atomic charge [67], atomic electronegativity in Pauling scale [68] and so on. Here, 

we characterized each bond with the following parameter: 

wi = xi/δi + xj/δj                                                                                                                                                                                                            (2) 

which characterizes each bond. In this expression, xi can be any standard weight of the i atom bonded 

with atom j. The δi is the vertex (atom) degree of atom i. The use of each scale (bond property) defines 

alternative molecular vectors, w . 

2.3 Theory of Non-Stochastic and Stochastic Total (Whole) and Local (Bond, Group and Bond-Type) 

Quadratic Indices 

If a molecule consists of m bonds (vector of ℜm), then the kth total quadratic indices are calculated as 

quadratic maps (quadratic form) in ℜm, in canonical basis set. Specifically, the kth total non-stochastic 

and stochastic quadratic indices, qk( w ) and sqk( w ), are computed from these kth non-stochastic and 

stochastic edge adjacency matrices, Ek and ESk, as shown in Eqs. 3 and 4, correspondingly: 
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where m is the number of bonds of the molecule, and w1,…,wm are the coordinates of the bond-based 

molecular vector ( w ) in the so-called canonical (‘natural’) basis set. In this basis set, the coordinates of 

any vector w  coincide with the components of this vector [69, 70]. Therefore, those coordinates can be 

considered as weights (bond labels) of the edge of the molecular graph. The coefficients keij and kesij are 

the elements of the kth power of the matrices E(G) and ES(G), correspondingly, of the molecular graph. 
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The defining equations (3) and (4) for qk( w ) and sqk( w ), respectively, may be also written in matrix 

form (see Eqs. 3 and 4), where [W] is a column vector (an mx1 matrix) of the coordinates of w  in the 

canonical basis set of  ℜm, and [W]t (an 1xm matrix) is the transpose of [W]. Here, Ek and ESk denote the 

matrices of quadratic maps with regard to the natural basis set. 

In addition to total bond-based quadratic indices computed for the whole molecule, a local-fragment 

(bond, group and bond-type) formalism can be developed. These MDs are termed local non-stochastic 

and stochastic quadratic indices, qkL( w ) and sqkL( w ), respectively. The definition of these descriptors is 

as follows: 
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where m is the number of bonds, and keijL [kesijL] is the kth element of the row “i” and column “j” of the 

local matrix Ek
L [ESk

L]. This local matrix is extracted from the Ek [ESk] matrix and contains information 

referred to the edges (bonds) of the specific molecular fragments and also of the molecular environment 

in k steps. The matrix Ek
L [ESk

L] with elements keijL [kesijL] is defined as follows:  
keijL [kesijL] = keij [kesij], if both ei or ej are edges (bonds) contained in the  

                       molecular fragment  

                  = ½ keij [kesij] if either ei and ej are edges (bonds) contained in the molecular  

                    fragment 

                  = 0, otherwise                                                                                                                    (7)                         

Notice that the scheme above follows the spirit of a Mulliken population analysis.[71] Note also that for 

every partitioning of a molecule into Z molecular fragments, there will be Z local molecular-fragment 

matrices. In particular, if a molecule is partitioned into Z molecular fragments, the matrices Ek [ESk] can 

be partitioned into Z local matrices Ek
L [ESk

L], L = 1,... Z, and the kth power of matrix E [ES] is exactly 

the sum of the kth power of the local Z matrices. Therefore, the total non-stochastic and stochastic bond-

based quadratic indices are the sum of the non-stochastic and stochastic bond-based quadratic indices, 

respectively, of the Z molecular fragments: 
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Bond, group and bond-type quadratic fingerprints are specific cases of local bond-based quadratic 

indices. Therefore, the kth bond-type quadratic indices are calculated by adding the kth-bond quadratic 

indices for all bonds of the same type in the molecule. Likewise, this extension of the bond quadratic 

index is similar to group additive schemes in which an index appears for each bond type in the molecule, 

together with its contribution based on the bond quadratic index. 

In the bond-type quadratic indices formalism, each bond in the molecule is classified into a bond-type 

(fragment). Therefore, bonds may be classified into bond types in terms of the characteristics of the two 

atoms that define the bond. For all data sets, including those with a common molecular scaffold as well 

as those with rather diverse structure, the kth fragment (bond-type) quadratic indices provide much useful 

information. Thus, the development of the bond-type quadratic indices description provides the basis for 

an application to a wider range of biological problems, in which the local formalism is applicable 

without the need for superposition of a closely related set of structures. The bond-type descriptors 

combine three important aspects of structure information: 1) electron accessibility for the bonds of the 

same type, 2) presence/absence of the bond type, and 3) count of the bonds in the bond type. 

Finally, these local MDs can be calculated by a chemical (or functional) group in the molecule, such as 

heteroatoms (O, N and S in all valence states and including the number of attached H-atoms), hydrogen 

bonding (H-bonding) to heteroatoms (O, N and S in all valence states), halogen atoms (F, Cl, Br and I), 

all aliphatic carbon chains (several bond-types), all aromatic bonds (aromatic rings), and so on. The 

group-level quadratic indices are the sum of the individual bond-level quadratic indices for a particular 

group of bonds. For all data set structures, the kth group-based quadratic indices provide also important 

information for QSAR/QSPR studies. A detailed example of the calculation of the bond-based quadratic 

indices can be seen in an earlier publication [27]. 

2.4 3D-Chiral Non-stochastic and Stochastic Bond-Based Quadratic Indices. 

The total and local bond-based quadratic indices, as defined above, cannot codify any information about 

the 3D molecular structure. In order to solve this problem, we introduced a trigonometric 3D-chirality 

correction factor in the components (w) of w . Therefore, a chirality molecular vector is obtained * w  

and each bond will be characterized by the following parameter: 

wi = *xi /δi + *xj/ δj                                                                                                                              (10) 

Notice that this equation is quite similar to Eq. 2, but the atomic weights of the atoms that characterize 

the bond, xi and xj, where replaced by the terms *xi= {xi + sin[(ωA+ 4Δ)π/2]}  and *xj = {xj + sin[(ωA+ 

4Δ)π/2]} to take into account the 3D environment.  
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The trigonometric 3D-chirality correction factor uses a dummy variable, ωA, and an integer parameter, 

Δ [39, 41, 43]: 

ωA = 1, and Δ is an odd number when A has R (rectus), E (entgegen), or a (axial)  

         notation according to Cahn-Ingold-Prelog (CIP) IUPAC rules                                               (11) 

     = 0, and Δ is an even number, if A does not have 3D specific enviroment 

     = -1, and Δ is an odd number when A has S (sinister), Z (zusammen),  

        or e (equatorial) notation according to CIP rules 

Thus, this 3D-chirality factor, sin[(ωA+4Δ)π/2], takes different values in order to codify specific 

stereochemical information such as chirality, Z/E isomerism, and so on. This factor, therefore, takes 

values in the following order 1 > 0 > -1 for atoms that have specific 3D environments. The chemical 

idea here is not that the attraction of electrons by an atom depends on its chirality, because experience 

shows that chirality does not change the electronegativities of atoms in the molecule, in an isotropic 

environment in an observable manner [72]. This correction has mainly a mathematical meaning and 

must not be the source of any misunderstanding.  

 
Table 7. Classification of 32 perindoprilate stereoisomers and the statistical parameters of the QSAR 
models obtained using different MDs.  

Index n λ D2 % Accuracy 
(Training) 

%Accuracy 
(Test) F 

Bond-based non-stochastic 
quadratic indices (Eq. 16) 2 0.447 5.86 100.00 88.88 12.37 

Bond-based stochastic 
quadratic indices (Eq. 17) 2 0.448 5.84 95.65 88.88 12.32 

Atom-based non-stochastic 
quadratic indices [40] 2 0.420 7.12 95.65 100.00 13.73 

MARCH-INSIDE molecular 
descriptors [21] 3 0.380 8.43 91.30 88.88 10.30 

n: number of parameters in the obtained model.  
 
A severe limitation of the GBT [1] approach is the existence of different chirality corrections, and we 

have great difficulty in selecting one of these. Therefore, the present trigonometric 3D-chiral correction 

factor is invariant with regard to the selection of other chirality scales for all kinds of such chiral TIs 

(GBT-like ones). Table 1 depicts the values of the trigonometric 3D-chirality correction factor for all 

allowed values of ωA and Δ (GBT-like chirality scale and other alternative chirality scales). In Table 1, it 

is clearly shown that the trigonometric 3D-chirality factor is invariant with regard to the selection of all 

possible real scales. Moreover, the factor ever gets the values 1, 0 and -1 for R, non-chiral and S atoms. 

As outlined above, the demonstration of invariance for this factor with regard to other 3D features such 

as a/e substitutions and Z/E or π-isomers is straightforward to realize by homology. Henceforth, we do 
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not need to answer the question regarding the best value for chirality correction, at least for linear scales 

[1, 10, 21]. 

A rather interesting point is that, for molecules without specific 3D characteristics, the present 3D-chiral 

descriptor is reduced to simple (2D) bond-based quadratic indices, because sin[(0+4Δ)π/2] = 0, being Δ 

zero or any even number. Therefore, when all the atoms in the molecule are achiral, the bond-based 

quadratic indices or any GBT-like chiral TIs do not change upon the introduction of this factor. 

Therefore, for example * w  = w  and thus, *qk( w ) = qk( w ). 

3. Experimental Section 

3.1 Computational Strategies 

All the computations were carried out on a PC Pentium-4 3.2 GHz. The TOMOCOMD package for 

Windows, developed in our laboratory, was used to compute the molecular descriptors for the dataset of 

compounds. This software is an interactive program for molecular design and bioinformatics research 

[73]. It consists of four subprograms; each one of them allows both drawing the structures (drawing 

mode) and calculating molecular 2D/3D descriptors (calculation mode). The modules are named 

CARDD (Computed-Aided ‘Rational’ Drug Design), CAMPS (Computed-Aided Modeling in Protein 

Science), CANAR (Computed-Aided Nucleic Acid Research) and CABPD (Computed-Aided Bio-

Polymers Docking). In the present report, we outline salient features concerned with only one of these 

subprograms, CARDD, and with the calculation of non-stochastic and stochastic bond-based 3D chiral 

quadratic indices. 

The main steps for the application of the present method in QSAR/QSPR and drug design can be 

summarized briefly in the following algorithm: 1) Draw the molecular structure for each molecule in the 

data set, using the software drawing mode. This procedure is performed by a selection of the active 

atomic symbol, which belong to the different groups in the periodic table of the elements; 2) Use 

appropriate weights in order to differentiate the atoms in the molecule. The weight used in this work is 

the atomic electronegativity in Pauling scale (E) [68]; 3) Compute the total and local (bond, group and 

bond-type) non-stochastic and stochastic quadratic indices. It can be carried out in the software 

calculation mode, where one can select the atomic property and the descriptor family before calculating 

the molecular indices. This software generates a table in which the rows correspond to the compounds, 

and columns correspond to the bond-based (both total and local) quadratic maps; 4) Find a QSPR/QSAR 

equation by using several multivariate analytical techniques, such as multilinear regression analysis 

(MRA), neural networks, linear discrimination analysis, and so on. Therefore, one can find a 
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quantitative relation between an activity A and the quadratic fingerprints having, for instance, the 

following appearance, 

A = a0
*q0( w ) + a1

*q1( w ) + a2
*q2( w ) +….+ ak

*qk( w ) + c                                            

where A is the measured activity, *qk( w ) are the kth bond-based 3D-chiral quadratic indices, and the ak’s 

and c are the coefficients obtained by the MRA; 5) Test the robustness and predictive power of the 

QSPR/QSAR equation by using internal (cross-validation) and external validation techniques. 

The bond–based quadratic indices descriptors computed in this study were the following: 

1)   kth (k = 15) total non-stochastic bond-based 3D-chiral quadratic indices, not considering and 

considering H-atoms in the molecular graph (G) [*qk( w ) and *qk
H( w ), respectively]. 

2) kth (k = 15) total stochastic bond-based 3D-chiral quadratic indices, not considering and considering 

H-atoms in the molecular graph (G) [*sqk( w ) and *sqk
H( w ), respectively]. 

3)   kth (k = 15) bond-type local (group = heteroatoms: S, N, O) non-stochastic 3D-chiral quadratic 

indices, not considering and considering H-atoms in the molecular graph (G) [*qkL( w E) and 
*qkL

H( w E), correspondingly]. These local descriptors are putative molecular charge, dipole moment, 

and H-bonding acceptors. 

4) kth (k = 15) bond-type local (group = heteroatoms: S, N, O) stochastic 3D-chiral quadratic indices, not 

considering and considering H-atoms in the molecular graph (G) [*sqkL( w E) and *sqkL
H( w E), 

correspondingly]. These local descriptors are also putative molecular charge, dipole moment, and H-

bonding acceptors. 

3.2. Chemometric analysis 

Statistical analysis was carried out with the STATISTICA software [74]. The considered tolerance 

parameter (proportion of variance that is unique to the respective variable) was the default value for 

minimum acceptable tolerance, which is 0.01. Forward stepwise procedure was fixed as the strategy for 

variable selection. The principle of maximal parsimony (Occam's razor) was taken into account as the 

strategy for model selection. Therefore, we selected the model with the highest statistical signification, 

but having as few parameters (ak) as possible.  

Multiple Linear Regression (MLR) analysis was carried out to predict corticosteroid-binding globulin 

affinity of a steroid data set and the σ-receptor antagonist activities of 3-(3-hydroxyphenyl)piperidines. 

The quality of the models was determined by examining the regression’s statistical parameters and those 

of the cross-validation analysis [75, 76]. Therefore, the quality of the models was determined by 

examining the determination coefficients (also know as square correlation coefficients, R2), Fisher-
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ratio’s p-level [p(F)], standard deviation of the regression (s), and the leave-one-out (LOO) press 

statistics (q2, scv) analogues to R2 and s [75, 77]. 

On the other hand, linear discriminant analysis (LDA) was performed to classify the 32 perindoprilate 

stereoisomers as angiotensin-converting enzyme (ACE) inhibitors or not. The quality of the models were 

determined by examining Wilks’ λ parameter (U-statistic), square Mahalanobis distance (D2), Fisher 

ratio (F) and the corresponding p-level [p(F)] as well as the percentage of good classification in the 

training and test sets. The statistical robustness and predictive power of the obtained model was assessed 

by using an external prediction (test) set. In developing classification models, the values of 1 and -1 

were assigned to active and inactive compounds, respectively. By using the models, one compound can 

then be classified as active, if ∆P% > 0, being ΔP% = [P(Active) - P(Inactive)]x100 or as inactive, 

otherwise. P(Active) and P(Inactive) are the probabilities with which the equations classify a compound 

as active and inactive, correspondingly.  

Finally, the calculation of percentages of global good classification (accuracy) and Matthews’ 

correlation coefficient (MCC), in the training and test sets, permitted the assessment of the model [78]. 

The MCC always takes values between -1 and +1. A value of -1 indicates total disagreement (all-false 

predictions), and +1, total agreement (perfect predictions). The MCC is 0 for completely random 

predictions and, therefore, it yields easy comparison with regard to a random baseline. Therefore, MCC 

quantifies the strength of the linear relation between the molecular descriptors and the classifications 

[78], and it may often provide a much more balanced evaluation of the prediction than, for instance, the 

percentages. 

4. Result and Discussion 

With the objective of assessing the efficacy of bond-based 3D-chiral quadratic indices, we have tested 

their ability to predict pharmacological properties, in several groups of compounds with a known 

stereochemical influence. We select these data sets because they have been repeatedly used in a number 

of QSAR studies in recent years. Now, we are going to discuss the use of the bond-based 3D-chiral 

quadratic indices descriptors in each one of these well-known series of compounds, and a comparison 

with other previously reported approaches will be also developed. 

4.1 Prediction of the Corticosteroid-Binding Globulin (CBG) Binding Affinity of a Steroid Family. 

The first molecular set used in our study is made up of 31 steroids, for which the affinity to the 

corticosteroid-binding globulin was measured. The so-called Cramer’s steroid data set is a well-known 

benchmark to QSAR researchers [22, 79-89]. Various groups used this data set to compare the quality of 

their 3D-QSAR methods. Hence, this data set has become one of the most often discussed ones and can 



 12

be seen as a point of reference data set for novel MDs [90]. It was used here for the shake of 

comparability [88]. We use this molecular set because all the compounds in this data set contain chiral 

atoms, and binding affinities of these compounds are available [22]. Due to the fact that the studied 

steroid molecular structures have been already depicted in several publications [22, 80], they will not be 

included here. Table 2 gathers the entire studied set with the experimental binding affinities, taken from 

Robert et al. [87].  The obtained models are given below together with their statistical parameters: 

CBG = -6.17(±1.54) –0.044(±0.02)*q0( w ) +6.8x10-2(±0.8x10-2)*q2( w )  

            –3.6x10-2(±0.5x10-2)*q3( w ) +0.5x10-2(±0.1x10-2)*q4( w ) +5.1x10-2(±1.2x10-2)*q1
H( w ) 

           –7.4x10-2(±1.8x10-2)*q2L
H( w E) +3.9x10-3(±1.1x10-3)*q4L

H( w E)                                             (12) 

N = 31   R = 0.923    R2 = 0.852    F(7,23) = 18.93    s = 0.47   q2 = 0.74    scv = 0.55   p< 0.0001 

 

CBG = –8.51(±0.69) +0.756(±0.174)*sq1L
H( w E) +0.470±0.082*sq2

H( w )  

            –2.069(±0.894)*sq3L
H( w E) –0.435(±0.093)*sq1

H( w ) +19.992(±4.975)*sq8L
H( w E) 

           –29.764(±8.794)*sq7L
H( w E) +11.280(±4.382)*sq6L

H( w E)                                                      (13) 

N = 31   R = 0.931    R2 = 0.867    F(7,23) = 21.44    s = 0.45   q2 = 0.78    scv = 0.50   p< 0.0001 

where N is the size of the data set, R2 is the square regression coefficient (determination coefficient), s is 

the standard deviation of the regression, F is the Fischer ratio and q2 (scv) are the square correlation 

coefficient (standard deviation) of the cross-validation performed by the leave-one-out (LOO) 

procedure. As can be seen, the non-stochastic model (Eq. 12) explains more than 85% of the variance of 

the experimental CBG values, using seven variables to describe the 31 steroids, while the stochastic 

model (Eq. 13) explains more than 86% of this experimental value also using seven variables. The 

predicted values for this data set, using non-stochastic and stochastic bond-based 3D-chiral quadratic 

indices, are also shown in Table 2. The model’s obtained deviation, with bond-based 3D-chiral quadratic 

indices, shows a smaller value of standard deviation (s = 0.45) than the one obtained with non-stochastic 

indices (s = 0.47).  

An important aspect of QSAR modeling is the development of a way of performing the statistical 

validation of the models. Good direct statistical criteria to fit the data set are not a guarantee that the 

model can make accurate predictions for compounds outside the data set. The LOO statistic has been 

used as means of demonstrating predictive capability. These models showed cross-validation square 

correlation coefficients of 0.740 and 0.784, respectively. These values of q2 (q2 > 0.5) can be considered 

as a proof of the high predictive ability of the models [75-77]. 
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Table 2. Results of the steroids data set used for QSAR study.  
Non-stochastic bond-based  
3D-chiral quadratic indices 

 Stochastic bond-based 
3D-chiral quadratic indices 

   
Observed CBG 
affinity (pKa)a Predicted 

value %Eb %Ecv
c Predicted 

value %Eb %Ecv
c 

1 Aldosterone -6.279 -6.152 2.016 5.262 -6.346 1.061 1.378 
2 Androstanediol -5.000 -5.425 8.504 13.763 -5.388 7.763 12.064 
3 Androstenediol -5.000 -5.082 1.633 1.995 -4.957 0.869 1.136 
4 Androstenedione -5.763 -6.658 15.524 19.881 -6.451 11.945 13.865 
5 Androsterone -5.613 -5.680 1.193 1.298 -5.862 4.432 5.739 
6 Corticosterone -7.881 -7.437 5.638 7.181 -7.375 6.423 7.575 
7 Cortisol -7.881 -7.512 4.677 5.281 -7.463 5.305 6.465 
8 Cortisone -6.892 -7.461 8.259 9.716 -7.542 9.437 11.412 
9 Dehydroepiandrosterone -5.000 -4.745 5.093 7.469 -4.923 1.548 2.681 

10 Deoxycorticosterone  -7.653 -7.629 0.320 0.415 -8.008 4.641 6.417 
11 Deoxycortisol -7.881 -7.907 0.326 0.391 -7.772 1.380 1.807 
12 Dihydrotestosterone -5.919 -5.191 12.301 14.859 -5.037 14.896 18.513 
13 Estradiol -5.000 -4.821 3.571 4.457 -4.841 3.185 4.750 
14 Estriol -5.000 -5.103 2.055 3.664 -5.035 0.696 1.585 
15 Estrone -5.000 -5.254 5.081 7.260 -4.975 0.506 0.752 
16 Ethiocholanolone -5.255 -4.977 5.294 6.612 -5.181 1.407 1.816 
17 Pregnenolone -5.255 -5.936 12.968 14.338 -5.782 10.033 11.251 
18 17-Hydroxyregnenolone -5.000 -5.735 14.700 20.475 -5.584 11.680 15.140 
19 Progesterone -7.380 -7.105 3.731 4.294 -7.138 3.276 3.852 
20 17-Hydroxyprogesterone -7.740 -6.878 11.143 15.096 -6.975 9.890 13.210 
21 Testosterone -6.724 -6.226 7.412 8.731 -6.332 5.832 6.708 
22 Prednisolone -7.512 -7.460 0.696 0.865 -7.728 2.873 3.463 
23 Cortisolacetate -7.553 -7.430 1.623 3.788 -7.486 0.882 8.721 
24 4-Pregnene-3,11,20-trione -6.779 -6.835 0.825 0.975 -6.861 1.205 1.670 
25 Epicorticosterone -7.200 -7.779 8.042 11.291 -7.120 1.105 1.239 
26 19-Nortestosterone -6.144 -5.954 3.092 4.822 -6.277 2.165 2.664 
27 16α,17α-Dihydroxyprogesterone -6.247 -6.291 0.697 0.857 -6.839 9.471 10.610 
28 16α -Methylprogesterone -7.120 -7.203 1.172 1.495 -7.052 0.955 1.114 
29 19-Norprogesterone -6.817 -6.840 0.344 0.467 -6.692 1.829 2.076 
30 2α -Methylcortisol -7.688 -7.237 5.860 7.836 -7.157 6.913 8.113 
31 2α -Methyl-9α-fluorocortisol -5.797 -6.030 4.020 10.274 -5.795 0.034 0.115 

aObserved CBG affinity values taken from Robert et al.; concentration are expressed in nM [87].  bE: Error. cEcv: Error 
of LOO validation. 
 

As we previously pointed out, one of the objectives of the present report is to compare with other 

methods used for this data set. The results of these publications are summarized in Table 3, where the 

results were arranged in decreasing value of q2, and the comparison can more easily be carried out. It is 

remarkable that the present QSAR method, non-stochastic and stochastic bond-based 3D-chiral linear 

indices, obtains results that favorably compare to other highly predictive QSAR models, even when they 

use more sophisticated statistic methods such as partial least squared, principal components analysis, 

non-linear neural network techniques and so on. Many of the models, object of comparison, were 
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obtained from different procedures based on quantum mechanics and/or geometric principles, as well as 

molecular mechanic approaches. 

 

Table 3. Comparison between prediction for the steroid data set with bond-based 3D-chiral quadratic 
indices and other 3D QSAR approaches. 

QSAR Method N n Statistical 
method 

q2 Ref. 

TQSAR 31 6 MLR after PCA 0.842 [87] 
Bond-based stochastic 3D-chiral quadratic indices 31 7 MLR 0.784 Eq 13 
Atom-based 3D-chiral quadratic indices (non-stochastic)  31 6 MLR 0.781 [41] 
MEDV 31 5 GA and RLM 0.777 [93] 
TQSI 31 3 MLR 0.775 [83] 
MEDV 31 6 GA and RLM 0.765 [93] 
Bond-based non-stochastic 3D-chiral quadratic indices 31 7 MLR 0.740 Eq 12 
Atom-based 3D-chiral quadratic indices (stochastic)  31 7 MLR 0.735 [41] 
Similarity indices 31 1 PLS 0.734 [85] 
E-State and kappa shape index 31 4 MLR* 0.730 [94] 
MQSM 31 4 MLR after PLS 0.727 [84] 
E-State and kappa shape index 31 4 MLR 0.720 [94] 
MQMS 31 3 MLR and PCA 0.705 [83] 
CoMMA 31 6 PCR 0.689 [95] 
MEDV 31 4 GA and RLM 0.648 [93] 
Wagener's 31 - k-NN and FNN 0.630 [81] 

N: number of steroids. n: number of variables. q2: leave-one-out cross-validated coefficient of determination. 
*One variable has a non-linear relationship 

 

4.2 Modeling σ-Receptor Antagonist Activities of 3-(3-hydroxyphenyl)piperidines 

In a second application, we investigate the ability of bond-based 3D-chiral quadratic indices to predict σ 

receptor antagonistic activities. A short data set of seven pairs of chiral N-alkylated 3-(3-

hydroxyphenyl)piperidines which bind to σ-receptors, are also selected as illustrative example of the 3D-

chiral bilinear indices application. This data set was introduced in QSAR studies by de Julian-Ortiz et al. 

[10] in 1998 and, after that, it has been repeatedly used by some authors [21, 39, 40, 43] in recent years to 

validate new CTIs. The σ-receptors mediate severe side effects induced by various dopamine antagonists 

[10]. 

Bond-based 3D-chiral quadratic indices are non-symmetric and reduce to classical descriptors when 

symmetry is not codified. Besides, Gónzalez-Díaz et al. conclude that σ-receptor antagonist activity is 

not a pseudoscalar property [21], and we can expect, at least, a good correlation with bond-based 3D-

chiral quadratic indices. The multiple linear regression (MLR) analysis was used to develop QSAR 

models for the σ-receptor antagonistic activities. The models obtained using non-stochastic and 
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stochastic bond based 3D-chiral quadratic indices for the σ-receptor antagonistic activities are given 

below: 

logIC50(σ) = -9.214(±0.961) +0.146(±0.022)*q0( w ) +5.86x10-11(±2.22x10-11)*q15
H( w )                  (14)   

N = 14    R2 = 0.939    q2
LOO

 = 0.882    F(2, 11) = 84.53    s = 0.272    scv = 0.348   p< 0.0001 

 

logIC50(σ) = -7.372(±0.442) +1.042(±0.102)*sq0
H( w ) -1.278(±0.148)*sq2

H( w )                               (15)   

N = 14    R2 = 0.969    q2
LOO

 = 0.956    F(2, 11) = 172.57    s = 0.194    scv = 0.213   p< 0.0001 

where N is the size of the data set, R2 is the square correlation coefficient (determination coefficient), s 

is the standard deviation of the regression, F is the Fischer ratio and q2 (scv) is the square correlation 

coefficient (standard deviation) of the cross-validation performed by the LOO procedure. These 

statistics indicate that both models are appropriate for the description of the chemicals studied here. In 

Table 4, the structure and values of the experimental and predicted values of Log IC50 (50 percent 

inhibitory concentration in nM) are shown for this data set. 

 
Table 4. Results of multivariate regression analysis of the log IC50 of a group of n-alkylated 3-(3-
hydroxyphenyl)piperidines for the σ-receptor. 

N
OHR

*
 

Log IC50 (σ-receptor) Compound 
 (Alkyl group)a Obs.b Cal.c Res.d Cal.e Res.d 

(R)-3-HPP 
H -0.66 -0.58 -0.08 -0.74 0.08 
CH3 0.43 0.00 0.43 0.44 -0.01 
C2H5 0.95 0.71 0.24 0.70 0.25 
n-C3H7 1.52 1.37 0.15 1.32 0.20 
i-C3H7 0.61 1.11 -0.50 0.91 -0.30 
n-C4H9 2.05 2.06 -0.01 1.97 0.08 
2-Phenylethyl 2.10 1.93 0.17 2.22 -0.12 
(S)-3-HPP 
H -1.19 -1.09 -0.10 -1.26 0.07 
CH3 -0.28 -0.44 0.16 -0.02 -0.26 
C2H5 -0.01 0.30 -0.31 0.23 -0.24 
n-C3H7 0.81 0.98 -0.17 0.85 -0.04 
i-C3H7 0.68 0.75 -0.07 0.43 0.25 
n-C4H9 1.51 1.68 -0.17 1.51 0.00 
2-Phenylethyl 1.80 1.55 0.25 1.76 0.04 
aAlkyl (R) group in nitrogen ring. bObserved values of the Log IC50, C in nM, for the σ-receptor taken from the 
literature[10, 21, 40]. cValues calculated using non-stochastic bond-based 3D-chiral quadratic indices (Eq. 14). 
dResidual defined as [Log  IC50 (σ)Obs – Log IC50 (σ)Cal]. eValues calculated using stochastic bond-based 3D-chiral 
quadratic indices (Eq. 15). 
Abbreviations: HPP, N-alkylated 3-Hydroxyphenyl piperidines. 
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These QSAR models use two variables, explain about the 94 % and 97% of the experimental values of 

log IC50 and show low values of standard deviation, 0.272 and 0.194, for bond-based non-stochastic and 

stochastic 3D-chiral linear indices models, correspondingly. The comparison of the results with the ones 

of other methods previously reported for the same activity is shown in Table 5, where an analyis 

between all these approaches can be easily carried out. As can be seen, the non-stochastic model results  

have statistical parameters which are similar to those obtained by Marrero-Ponce et al., using atom-

based 3D-chiral linear indices [39], and better than the ones of models obtained with MARCH-INSIDE 

molecular descriptors [21] and other chiral TIs [10]. Moreover, the model obtained with stochastic bond-

based quadratic indices showed better statistical parameters than the other QSAR models.  

Predictability and stability (robustness) of the obtained models, with regard to data variation were 

carried out here by means of LOO cross-validation. The models showed values of cross-validation 

determination coefficient (q2) of 0.882 and 0.956, when non-stochastic and stochastic bond-based 

quadratic indices were used, respectively. The values of q2 (q2 > 0.5) can be considered as a proof of the 

high predictive ability of the models [75, 76, 91]. Unfortunately, the authors of previous works, Diaz et 

al. [21] and de Julian de Ortiz et al. [10], did not report the result of the cross-validation. Considering all 

these statistical criteria, we can conclude that the model obtained with stochastic bond-based 3D-chiral 

quadratic indices is the best QSAR model for describing the property studied in this section.  

 
Table 5. Statistical parameters of the QSAR models obtained using bond-based 3D-chiral quadratic 
indices to predict the σ-Receptor antagonist activity of 14 N-alkylated 3-Hydroxyphenyl piperidines. 
index N n R2 s q2 scv F 
Bond-based stochastic 
quadratic indices 14 2 0.969 0.194 0.956 0.213 172.57 

Bond-based non-stochastic 
quadratic indices 14 2 0.939 0.272 0.882 0.348 84.53 

Atom-based non-Stochastic 
Quadratic indices [40] 14 2 0.940 0.270 0.912 0.289 85.82 

Chiral TIs [10] 14 3 0.931 0.301 * * 45.70 
MARCH-INSIDE 
molecular descriptors [21] 14 2 0.922 0.295 * 0.32 71.17 

*Values are not reported in the literature. 
 
4.3 Classification of the ACE Inhibitory Activity of 32 Perindoprilate’s σ-Stereoisomers 

Finally, in order to validate even more the bond-based 3D-chiral quadratic indices in QSAR studies, a 

recently introduced data set of 32 perindoprilate stereoisomers, angiotensin-converting enzyme (ACE) 

inhibitors [92] was used. Enzyme ACE acts in plasma and blood vessels, removing the C-terminal 

dipeptide of decapeptide Angiotesin I to produce the potent blood vessel-constricting octapeptide 

Angiotesin II. In addition, ACE inactivates the hypotensive nonapeptide bradykinin. Therefore, ACE is 
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the biological target of many important antihypertensive drugs called ACE inhibitors (ACEIs) [92]. In 

this study, ‘active’ is taken to mean a compound that has an IC50 value not greater than 110 nM. The 

obtained classification models are given below, together with the LDA statistical parameters: 

ACEiactv = 26.765 +4.297x10-10*q15
H( w ) -2.821x10-5*q9( w )                                                         (16)                       

N = 23      λ = 0.447      D2 = 5.857      F(2, 20) = 12.37       p < 0.0003 

ACEiactv = 30.845 +1.390*sq3( w ) -5.144*sq1
H ( w )                                                                        (17)                      

N = 23      λ = 0.448     D2 = 5.835       F(2, 20) = 12.32       p < 0.0003                               

where N is the number of compounds, λ is the Wilks’ statistic, D2 is the square Mahalanobis distance, F 

is the Fisher ratio and p-value is the significance level.  

The model (16), which includes non-stochastic bond-based quadratic indices, has an accuracy of 100% 

for the training set. This model showed a high Matthews’ correlation coefficient (MCC) of 1. The most 

important criterion for the acceptance or not of a discriminant model is based on the statistics for the 

external prediction set. Model (16) correctly classifies 100.00% of active (isomers 1, 2 and 4) and 

83.33% of inactive (isomers 12, 16, 20, 24 and 28) compounds in the test set, for an accuracy of 88.88% 

(MCC = 0.79). In Table 6, we give the basic structure of perindoprilate stereoisomers and their 

classification into the training and prediction sets, together with their posterior probabilities calculated 

from the Mahalanobis distance. 

A similar behaviour was obtained with stochastic linear indices (Eq. 17). In this case, the model 

correctly classifies 83.33% of active (isomers 3, 5, 6, 7 and 8) and 100% of inactive ones (compounds 

10, 11, 13-15, 17-19, 21-23, 25-27, 29-31), for accuracy of 95.65% and a high MCC of 0.887 for the 

training set. As we previously pointed out, the analisys of the statistics for external prediction sets is the 

main criterion for the acceptance or not of a discriminant model. In this sense, the stochastic model 

shows the same behaviour as the non-stochastic model with an accuracy of 88.88% and MCC = 0.79. 

A comparison between the results obtained in our study and those achieved with other cheminformatic 

approaches is depicted in Table 7. It should be remarked that our models contain one variable less than 

the model obtained with MARCH-INSIDE molecular descriptors,[21] as well as the same number of 

variables that were used by us with atom-based linear indices to develop the QSAR  models [41]. The 

obtained results with non-stochastic bond-based linear indices are quite similar to the ones obtained with 

atom-based linear indices, but the statistical parameters of the model developed with stochastic bond-

based linear indices are the best of all the models.  
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Table 6. Basic structure and chirality notation of active and inactive perindoprilate stereoisomers. 

N

O

OH

O CH
CH3

H
N CH

O
OH

1
2

3
3a
7a

4
5

6
7 8 9

10
11

12
13

14

15
16

17

 
No   Comp.a Classb IC50

c Class ΔPd Class ΔPd 

 Non-stochastic bond-based 
quadratic indices (Eq. 16) 

Stochastic bond-based 
quadratic indices (Eq. 17) 

Active Compounds 
1 SSRSS* + 1.1 + 0.610 + 0.864 
2 SRSSS* + 1.2 + 0.990 + 0.986 
3 SSSSS + 1.5 + 0.936 + 0.931 
4 SRRSS* + 3.3 + 0.950 + 0.952 
5 SSSSR + 12.2 + 0.799 + 0.749 
6 SSRSR + 29.4 + 0.082 + 0.544 
7 SRRSR + 39.8 + 0.834 + 0.818 
8 SRSSR + 54 + 0.968 + 0.945 
9 RRSSS + 108 + 0.103 - -0.619 

Non-active Compounds 
10 SSSRS - 1.1x103 - -0.277 - -0.298 
11 RSSSS - 1.9x103 - -0.705 - -0.926 
12 SSRRR* - 2.6x103 - -0.969 - -0.842 
13 RRSSR - 5.5x103 - -0.485 - -0.890 
14 SSRRS - 7.1x103 - -0.890 - -0.514 
15 RRSRS - 7.8x103 - -0.971 - -0.989 
16 RSRRR* - 23x103 - -1.000 - -1.000 
17 SRRRR - 33x103 - -0.774 - -0.587 
18 RSSSR - 36x103 - -0.906 - -0.981 
19 RSRSR - 47x103 - -0.991 - -0.989 
20 RSRSS* - 60x103 - -0.966 - -0.957 
21 RRRRR - 105 - -0.999 - -0.999 
22 SRRRS - 105 - -0.353 - -0.013 
23 RRRSS - 105 - -0.711 - -0.853 
24 SRSRR* - 105 - -0.029 - -0.143 
25 RRRRS - 105 - -0.997 - -0.995 
26 RRSRR - 105 - -0.992 - -0.997 
27 SSSRR - 105 - -0.727 - -0.748 
28 RSSRS* - 105 - -0.995 - -0.998 
29 RRRSR - 105 - -0.912 - -0.961 
30 RSSRR - 105 - -0.999 - -1.000 
31 RSRRS - 105 - -1.000 - -0.999 
32 SRSRS* - 105 + 0.547 + 0.475 

*Compounds used in the test set. aNotation of the chiral centers in each perindoprilate derivative in the following  
order C2, C3a, C7a, C9, C11. bClassification according to the value of the IC50. cValues of the  IC50, of the compound, 
for ACE in nM taken from previous works [10, 21].  
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Table 7. Classification of 32 perindoprilate stereoisomers and the statistical parameters of the QSAR 
models obtained using different MDs.  

Index n λ D2 % Accuracy 
(Training) 

%Accuracy 
(Test) F 

Bond-based non-stochastic 
quadratic indices (Eq. 16) 2 0.447 5.86 100.00 88.88 12.37 

Bond-based stochastic 
quadratic indices (Eq. 17) 2 0.448 5.84 95.65 88.88 12.32 

Atom-based non-stochastic 
quadratic indices [40] 2 0.420 7.12 95.65 100.00 13.73 

MARCH-INSIDE molecular 
descriptors [21] 3 0.380 8.43 91.30 88.88 10.30 

n: number of parameters in the obtained model.  
 

5. Concluding Remarks 

The non-stochastic and stochastic bond-based 3D-chiral quadratic indices are a novel set of MDs. They 

can be successfully applied in QSAR studies that include chiral molecules. Therefore, we suggest that 

2D-QSAR methods, improved by chirality descriptors, could be a powerful alternative to popular 3D-

QSAR approaches. 

Our studies demonstrated that bond-based 3D-chiral quadratic indices are able not only to discriminate 

between active and inactive perindoprilate stereoisomers, but also to codify information related to the 

pharmacological property, highly dependent on molecular symmetry, of a set of seven pairs of chiral N-

alkylated 3-(3-hydroxyphenyl)-piperidines that bind σ-receptors, as well as to predict the corticosteroid-

binding globulin affinity of the Cramer’s steroid data set. Moreover, we show that for the three data sets 

the chiral-QSAR models obtained with bond-based 3D-chiral quadratic indices had better or similar 

predictive ability, as compared to other chiral and/or 3D-QSARs previously reported. 

 

Acknowledgement: Castillo-Garit, J.A. and M-P, Y. acknowledges to the program ‘Estades Temporals 

per a Investigadors Convidats’ for a fellowship to work at Valencia University in 2008, C-G. J.A. also 

thanks to the program ‘Becas para la formación especializada de jóvenes investigadores de países en 

vías de desarrollo’ for a fellowship to work at Valencia University (2007). RGD acknowledges financial 

support of the Fondo de Investigación Sanitaria, Ministerio de Sanidad, Spain (project SAF2005–

PI052128). FT acknowledges financial support from the Spanish MEC (Project Nos. CTQ2004-07768-

C02-01/BQU) and CCT-005-07-00365) and EU (Program FEDER). 

 

References and Notes 

1. A. Golbraikh, D. Bonchev,A. Tropsha, J Chem Inf Comput Sci 2001, 41, 147-58. 



 20

2. J. V. de Julian-Ortiz, R. Garcia-Domenech, J. Galvez, R. Soler , F. J. García-March,G. M. 

Antón-Fos, J  Chromatogr A 1996, 719, 37-44. 

3. V. M. Potapov, Stereochemistry. Khimia: Moscow, 1988;  

4. J. Aires-de-Sousa,J. Gasteiger, J Mol Graph Model 2002, 20, 373-88. 

5. H. Schumacher, D. A. Blake, J. M. Gurian,J. R. Gillette, J Pharmacol Exp Ther 1968, 160, 189-

200. 

6. S. C. Stinson, Chem. Eng. News. 2000, 78, 43. 

7. J. Aires-de-Sousa, J. Gasteiger, I. Gutman,D. Vidovic, J Chem Inf Comput Sci 2004, 44, 831-6. 

8. J. Aires-de-Sousa,J. Gasteiger, J Chem Inf Comp Sci 2001, 41, 369-375. 

9. E. Ruch, Acc Chem Res 1972, 5, 49-56. 

10. J. V. de Julian-Ortiz, C. de Gregorio Alapont, I. Rios-Santamarina, R. Garcia-Domenech,J. 

Galvez, J Mol Graph Model 1998, 16, 14-18. 

11. R. Benigni, M. Cotta-Ramusino, G. Gallo, F. Giorgi, A. Giuliani,M. R. Vari, J Med Chem 2000, 

43, 3699-703. 

12. S. A. Wildman,G. M. Crippen, J Chem Inf Comput Sci 2003, 43, 629-36. 

13. H. P. Schultz, E. B. Schultz,T. P. Schultz, J. Chem. Inf. Comput. Sci. 1995, 35, 864 - 870. 

14. J. Aires-de-Sousa,J. Gasteiger, J Comb Chem 2005, 7, 298-301. 

15. E. Estrada,E. Uriarte, Curr Med Chem 2001, 8, 1573-88. 

16. A. Pyka, J. Serb. Chem. Soc. 1997, 62, 251-269. 

17. A. Pyka, J. Planar Chromatogr. Mod. TLC 1993, 6, 282-288. 

18. A. Pyka, J. Liq. Chromatogr. Relat. Technol. 1999, 22, 41-50. 

19. I. Gutman,A. Pyka, J. Serb. Chem. Soc. 1997, 62, 261-265. 

20. A. B. Buda ,K. Mislow, J Mol. Struct. (Theochem) 1991, 232, 1-12. 

21. H. G. Diaz, I. H. Sanchez, E. Uriarte,L. Santana, Comput Biol Chem 2003, 27, 217-27. 

22. R. D. Cramer, D. E. Patterson,J. D. Bunce, J. Am. Chem. Soc. 1988, 110, 5959-5967. 

23. Y. Marrero-Ponce, Molecules 2003, 8, 687-726. 

24. Y. Marrero-Ponce, J Chem Inf Comput Sci 2004, 44, 2010-2026. 

25. Y. Marrero-Ponce, F. Torrens, Y. J. Alvarado,R. Rotondo, J Comput-Aided Mol Design 2006, 

20, 685-701. 

26. G. M. Casanola-Martin, Y. Marrero-Ponce, M. T. Khan, A. Ather, S. Sultan, F. Torrens,R. 

Rotondo, Bioorg Med Chem 2007, 15, 1483-503. 



 21

27. Y. Marrero-Ponce, M. T. Khan, G. Casañola-Martín, A. Ather, M. N. Sultankhodzhaev, R. 

García-Domenech, F. Torrens,R. Rotondo, J. Comput.-Aided Mol. Design 2007, 21, 167-188. 

28. Y. Marrero-Ponce, R. Medina-Marrero, F. Torrens, Y. Martinez, V. Romero-Zaldivar,E. A. 

Castro, Bioorg Med Chem 2005, 13, 2881-2899. 

29. Y. Marrero-Ponce, R. M. Marrero, F. Torrens, Y. Martinez, M. G. Bernal, V. R. Zaldivar, E. A. 

Castro,R. G. Abalo, J Mol Model 2006, 12, 255-71. 

30. Y. Marrero-Ponce, Y. Machado-Tugores, D. M. Pereira, J. A. Escario, A. G. Barrio, J. J. Nogal-

Ruiz, C. Ochoa, V. J. Aran, A. R. Martinez-Fernandez, R. N. Sanchez, A. Montero-Torres, F. Torrens,A. 

Meneses-Marcel, Curr Drug Discov Technol 2005, 2, 245-65. 

31. Y. Marrero-Ponce, J. A. Castillo-Garit, E. Olazabal, H. S. Serrano, A. Morales, N. Castanedo, F. 

Ibarra-Velarde, A. Huesca-Guillen, A. M. Sanchez, F. Torrens,E. A. Castro, Bioorg Med Chem 2005, 

13, 1005-1020. 

32. Y. Marrero-Ponce, M. A. Cabrera, V. Romero-Zaldivar, M. Bermejo, D. Siverio,F. Torrens, 

Internet Electron J Mol Des 2005, 4 124-150. 

33. A. Montero-Torres, M. C. Vega, Y. Marrero-Ponce, M. Rolon, A. Gomez-Barrio, J. A. Escario, 

V. J. Aran, A. R. Martinez-Fernandez,A. Meneses-Marcel, Bioorg Med Chem 2005, 13, 6264-75. 

34. A. Montero-Torres, R. N. Garcia-Sanchez, Y. Marrero-Ponce, Y. Machado-Tugores, J. J. Nogal-

Ruiz, A. R. Martinez-Fernandez, V. J. Aran, C. Ochoa, A. Meneses-Marcel,F. Torrens, Eur J Med Chem 

2006. 

35. G. M. Casanola-Martin, M. T. Khan, Y. Marrero-Ponce, A. Ather, M. N. Sultankhodzhaev,F. 

Torrens, Bioorg Med Chem Lett 2006, 16, 324-30. 

36. Y. Marrero Ponce, A. Meneses-Marcel, J. A. Castillo Garit, Y. Machado-Tugores, J. A. Escario, 

A. G. Barrio, D. M. Pereira, J. J. Nogal-Ruiz, V. J. Arán, A. R. Martínez-Fernández, F. Torrens, R. 

Rotondo, F. Ibarra-Velarde,Y. J. Alvarado, Bioorg Med Chem 2006, 14, 6502-6524. 

37. J. A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens,R. García-Domenech, J. Pharm. Sci. 2008, 97, 

1946-1976. 

38. J. A. Castillo-Garit, Y. Marrero-Ponce, J. Escobar, F. Torrens,R. Rotondo, Chemosphere 2008, 

73, 415 - 427  

39. Y. Marrero-Ponce,J. A. Castillo-Garit, J. Comput.-Aided Mol. Design 2005, 19, 369-83. 

40. Y. Marrero-Ponce, H. G. Díaz, V. Romero, F. Torrens,E. A. Castro, Bioorg. Med. Chem. 2004, 

12, 5331-5342. 

41. J. A. Castillo-Garit, Y. Marrero-Ponce,F. Torrens, Bioorg Med Chem 2006, 14, 2398-2408. 



 22

42. J. A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens, R. García-Domenech,V. Romero-Zaldivar, J. 

Comput. Chem. 2008, 29, 2500 - 2512. 

43. J. A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens,R. Rotondo, J. Mol. Graphics Model. 2007, 

26, 32-47. 

44. D. H. Rouvray, Academic Press: London, 1976;  

45. N. Trinajstić, Chemical Graph Theory. CRC Press: Boca Raton, FL., 1983;  

46. E. Estrada,E. Molina, J Mol Graph Model 2001, 20, 54-64. 

47. E. Estrada, J Chem Inf Comput Sci 1995, 35, 31-33. 

48. E. Estrada,A. Ramirez, J Chem Inf Comput Sci 1996, 36, 837-43. 

49. E. Estrada, J Chem Inf Comput Sci 1996, 36, 844-49. 

50. E. Estrada, N. Guevara,I. Gutman, J Chem Inf Comput Sci 1998, 38, 428-31. 

51. E. Estrada, J Chem Inf Comput Sci 1999, 39, 1042-48. 

52. R. Todeschini,V. Consonni, Handbook of Molecular Descriptors. Wiley-VCH: Germany, 2000;  

53. C. H. Edwards,D. E. Penney, Elementary Linear Algebra. Prentice-Hall, Englewood Cliffs: New 

Jersey, USA 1988;  

54. H. Gonzalez-Diaz, E. Tenorio, N. Castanedo, L. Santana,E. Uriarte, Bioorg Med Chem 2005, 13, 

1523-30. 

55. H. G. Diaz, I. Bastida, N. Castanedo, O. Nasco, E. Olazabal, A. Morales, H. S. Serrano,R. R. de 

Armas, Bull Math Biol 2004, 66, 1285-311. 

56. H. Gonzales-Diaz, O. Gia, E. Uriarte, I. Hernadez, R. Ramos, M. Chaviano, S. Seijo, J. A. 

Castillo, L. Morales, L. Santana, D. Akpaloo, E. Molina, M. Cruz, L. A. Torres,M. A. Cabrera, J Mol 

Model (Online) 2003, 9, 395-407. 

57. Y. Marrero-Ponce, M. Iyarreta-Veitia, A. Montero-Torres, C. Romero-Zaldivar, C. A. Brandt, P. 

E. Avila, K. Kirchgatter,Y. Machado, J Chem Inf Model 2005, 45, 1082-100. 

58. A. Montero-Torres, R. N. García-Sánchez, Y. Marrero-Ponce, Y. Machado-Tugores, J. J. Nogal-

Ruiz, A. R. Martínez-Fernández, V. J. Arán, C. Ochoa, A. Meneses-Marcel,F. Torrens, Eur. J. Med. 

Chem. 2006, 41, 483–493. 

59. Y. Marrero-Ponce, R. Medina-Marrero, Y. Martinez, F. Torrens, V. Romero-Zaldivar,E. A. 

Castro, J. Mol. Mod. 2006, 12, 255-271. 

60. Y. Marrero-Ponce, Bioorg. Med. Chem. 2004, 12, 6351-6369. 

61. S. Vilar, E. Estrada, E. Uriarte, L. Santana,Y. Gutierrez, J Chem Inf Model 2005, 45, 502-14. 

62. V. M. Potapov, Stereochemistry. Mir: Moscow, 1978;  



 23

63. R. Wang, Y. Gao,L. Lai, Perspect. Drug Discov. Des. 2000, 19, 47-66. 

64. P. Ertl, B. Rohde,P. Selzer, J Med Chem 2000, 43, 3714-3717. 

65. A. K. Ghose,G. M. Crippen, J Chem Inf Comput Sci 1987, 27, 21-35. 

66. K. J. Millar, J. Am. Chem. Soc. 1990, 112, 8533-8542. 

67. J. Gasteiger,M. A. Marsilli, Tetrahedron Lett. 1978, 34, 3181-3184. 

68. L. Pauling, The Nature of Chemical Bond. Cornell University Press: Ithaca, NY, 1939;  

69. A. Browder, Mathematical Analysis. An Introduction., Springer-Verlag: New York, Inc. , 1996;  

70. S. Axler, Linear Algebra Done Right. Springer-Verlag: New York, 1996;  

71. P. D. Walker,P. G. Mezey, J. Am. Chem. Soc. 1993, 115, 12423-12430. 

72. E. L. Eliel, S. Wilen,L. Mander, Stereochemistry of Organic Compounds;. John Wiley & Sons 

Inc: New York, 1994;  

73. Y. Marrero-Ponce,V. Romero TOMOCOMD software. TOMOCOMD (TOpological MOlecular 

COMputer Design) for Windows, version 1.0 is a preliminary experimental version; in future a 

professional version will be obtained upon request to Y. Marrero: yovanimp@qf.uclv.edu.cu; 

ymarrero77@yahoo.es, Central University of Las Villas., 2002. 

74. I. STATISTICA version. 6.0 Statsoft. 

75. S. Wold,L. Erikson,  in: Chemometric Methods in Molecular Design, H. van de Waterbeemd, 

(Ed.) VCH Publishers: Weinheim, 1995; pp 309-318. 

76. D. A. Belsey, E. Kuh,R. E. Welsch, Regression Diagnostics. Wiley: New York, 1980;  

77. A. Golbraikh,A. Tropsha, J Mol Graph Model 2002, 20, 269-76. 

78. P. Baldi, S. Brunak, Y. Chauvin, C. A. Andersen,H. Nielsen, Bioinformatics 2000, 16, 412-424. 

79. E. A. Coats, In 3D QSAR in Drug Design., Kluwer/ESCOM: Dordrecht, 1998;  

80. B. D. Silverman, Quant. Struct.-Act. Relat 2000, 19, 237-246. 

81. M. Wagener, J. Sadowski,J. Gasteiger, J. Am. Chem. Soc. 1995, 117, 7769-7775. 

82. S. S. So,M. Karplus, J Med Chem 1997, 40, 4347-4359. 

83. M. Lobato, L. Amat, E. Besalu,R. Carbo-Dorca, Quant. Struct.-Act. Relat 1997, 16, 465-472. 

84. E. Besalu, X. Girones, L. Amat,R. Carbo-Dorca, Acc Chem Res 2002, 35, 289-95. 

85. M. F. Parretti, R. T. Kroemer, J. H. Rothman,W. G. Richards, J Comput Chem 1997, 18, 1334-

1353. 

86. G. Klebe, U. Abraham,T. Mietzner, J. Med. Chem. 1994, 37, 4130-4146. 

87. D. Robert, L. Amat,R. Carbo-Dorca, J Chem Inf Comput Sci 1999, 39, 333-44. 

88. N. Stiefl,K. Baumann, J Med Chem 2003, 46, 1390-407. 



 24

89. H. Chen, J. Zhou,G. Xie, J. Chem. Inf. Comp. Sci. 1998, 38, 243-250. 

90. E. A. Coats, Persp. Drug Disc. Des 1998, 12-14, 199-213. 

91. M. T. Cronin,T. W. Schultz, J. Mol. Struct. (Theochem). 2003, 622, 39-51. 

92. M. Vicent, B. Marchand, G. Rémond, S. Jaquelin-Guinamant, G. Damien, B. Portevin, J. 

Baumal, J. Volland, J. Bouchet, P. Lambert, B. Serkiz, W. Luitjen, M. Lauibie,P. Schiavi, Drug Des. 

Discov 1992, 9, 11. 

93. S. S. Liu, C. S. Yin,L. S. Wang, J Chem Inf Comput Sci 2002, 42, 749-56. 

94. H. H. Maw,L. H. Hall, J Chem Inf Comput Sci 2001, 41, 1248-54. 

95. B. D. Silverman,D. E. Platt, J Med Chem 1996, 39, 2129-40. 




