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Abstract: The solution to the second order fuzzy unsteady non linear partial differential one-dimen-

sional Boussinesq equation is examined. The physical problem concerns unsteady flow in a semi-

infinite unconfined aquifer bordering a lake. There is a sudden rise and subsequent stabilization in 

the water level of the lake, thus the aquifer is recharging from the lake. The fuzzy solution is pre-

sented by a simple algebraic equation transformed in a fourth-degree polynomial approximation 

for the head profiles. In order to solve this equation, the initial and boundary conditions, as well as 

the numerous soil properties must be known. A fuzzy approach is used to solve the problem since 

the aforementioned auxiliary conditions are vulnerable to various types of uncertainty resulting 

from human and machine errors. The physical problem described by a partial differential equation 

and the generalized Hukuhara derivative and the application of this theory for the partial deriva-

tives were chosen as solving methods. In order to evaluate the accuracy and effectiveness of the 

suggested fuzzy analytical method, this study compares the findings of fuzzy analysis to those ob-

tained using the Runge-Kutta method. This comparison attests to the accuracy of the former. Addi-

tionally, this results to a fuzzy number for water level profiles as well as for the water volume vari-

ation, whose α-cuts, provide according to Possibility Theory, the water levels and the water volume 

confidence intervals with probability p = 1 − α. 
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1. Introduction 

The horizontal water flow concerning unconfined aquifers without precipitation is 

described by the one dimensional second order unsteady nonlinear partial differential 

equation, called Boussinesq equation: 
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where K = hydraulic conductivity (LT−1), S = effective porosity(L0T0), h = piezometric 

head(L), x = horizontal coordinate (L), t = time (T). 

Boussinesq (1904) [1] first proposed the above equation according with the assump-

tions that the horizontal component of velocity ux does not change with depth and is a 

function of x and t, while the inertial forces are negligible. A unique solution to this non-

linear equation was published by Boussinesq in “Journal de Mathématiques Pures et Ap-

pliquées” journal in 1904. With boundary conditions like those of a soil drained by drains 

placed in the impermeable substratum, Boussinesq solution dealt with the case of an aq-

uifer atop an impermeable layer. Using the small disturbance method, Polubarinova-Ko-

china (952, 1962) [2,3] published a solution to Boussinesq’s equation. Bu utilizing polyno-

mial approximation and similarity transformation, Tolikas et al. (1984) [4] found an ap-

proximate solution. A weighted residual approach was used by Lockington (1997) [5] to 

provide an easily applicable analytical solution. Due to abrupt change in head at the 

origin, this approach was used for both recharging and discharging of an unconfined aq-

uifer. By using the Adomian’s decomposition method, Moutsopoulos (2010) [6] arrived at 

a simple series solution with a limited number of terms while He also performed a Bench-

mark test, which demonstrated the benefits of his solution. The problem of flow in a one-

dimensional semi-infinite horizontal aquifer with an initially dry head and a power-law 

function of time at the origin was examined by Lockington et al. in 2000 [7]. In accordance 

with the numerical outcomes, an approximative quadratic solution was developed. Using 

the traveling wave method, Basha (2013) [8] obtained a nonlinear solution with easily ap-

plicable logarithmic form. The solution allows for the results to be of practical value in 

hydrology and is adaptable to any flow situation, whether it be recharge or discharge 

condition. There are also algebraic formulae for the propagation front velocity, the loca-

tion of the wetting front, and the linkage between the characteristics of the aquifer. The 

nonlinear Boussinesq equation was given by a series solution by Chor et al. (2013) [9] in 

terms of the Boltzmann transform in a semi-infinite domain. An approximate solution was 

recently obtained by Hayek (2019) [10], who introduced an empirical function with four 

parameters. Using Microsoft Excel Solver, a numerical fitting approach was used to ac-

quire the parameters. An approximate analytical solution for the recharge and discharge 

of a homogeneous unconfined aquifer was published by Tzimopoulos et al. in 2022 [11]. 

Numerous other studies [12–16] offer helpful clarification on the solution, offering a way 

for testing and accuracy of the numerical methods. 

The definition of the initial flow condition, the method of linearizing the Boussinesq 

equation, the definition of drain spacing and hydraulic conductivity, boundary condi-

tions, etc. are just a few examples of the ambiguities and uncertainties that the physical 

problem described by the Boussinesq equation presents [17,18]. Without taking into ac-

count the ambiguities and uncertainties of the groundwater flow problems, wrong man-

agement decisions could be made leading to a number of significant negative environ-

mental, social, and economic effects. Fuzzy algorithms were used to solve this problem 

for all the aforementioned reasons. 

Fuzzy logic theory is a useful tool for modeling ambiguity, developed by Lofti Zadeh 

(1965) [19]. Its development has had a significant impact on both theoretical problems [20–

23] as well as engineering and hydraulic problems [24]. To solve fuzzy differential equa-

tions, some analytical and numerical approaches have recently been put forth. Chang and 

Zadeh, (1972) [25] were first introduced the concept of fuzzy derivative while Dubois and 

Prade (1982) [26], followed by using the extension principle in their approach. Fuzzy dif-

ferential functions were studied by Puri and Ralescu (1983) [27], who extended 

Hukuhara’s derivative (H-derivative) [28] of a set of values appearing in fuzzy sets. Ka-

leva (1987, 1990) [29,30] and Seikkala (1987) [31] developed the fuzzy initial value problem 
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while Abbasbandy and Allahviranloo (2002) [32] present a numerical algorithm for solv-

ing fuzzy ordinary differential equations based on the 2nd Taylor method. But this 

method has presented certain drawbacks, and in many cases this solution was not a good 

generalization of the classic case. The generalized Hukuhara differentiability (gH—differ-

entiability) was introduced by [33,34], overcoming this drawback. This new derivative is 

defined for a larger class of fuzzy functions than Hukuhara derivative. Allahviranloo et 

al. (2015) [35], introduced the (gH-p) differentiability for partial derivatives as an exten-

sion of the above theory. The gH-p differentiability was used by Tzimopoulos et al. (2018, 

2020) [17,36] providing a fuzzy linear analytical solution to a parabolic partial differential 

equation and also Tzimopoulos et al. (2018) [18] obtained a fuzzy linear analytical solution 

to the Boussinesq equation in the case of an unconfined aquifer problem. 

In this paper a comparison between the fuzzy analytical nonlinear Boussinesq equa-

tion, with the Runge-Kutta numerical method is presented, for the proposed fuzzy ana-

lytical solution accuracy evaluation and effectiveness check. This comparison attests to 

the accuracy of the former. Additionally, an application of the Possibility Theory [37,38], 

to the α-cuts of the water level profiles as well as of the water volume variation, provides 

the water levels and the water volume confidence intervals with probability p = 1 − α. 

Thus, a combination of fuzzy theory with the Possibility Theory allows managers and 

engineers to solve practical hydraulic problems, taking the write decision. 

2. Constructing the Fuzzy Model and Solution 

2.1. Crisp Model 

As mentioned in introduction in the case of one-dimensional horizontal flow, Bous-

sinesq equation is: 

𝜕ℎ

𝜕𝑡
=

𝐾

𝑆

𝜕

𝜕𝑥
(ℎ

𝜕ℎ

𝜕𝑥
) (1) 

The initial and boundaries conditions are: 

𝑡 = 0, ℎ(𝑥, 0) = ℎ0, 
𝑡 > 0, ℎ(0, 𝑡) = ℎ1, ℎ

𝑥→∞
(𝑥, 𝑡) = ℎ0  

The solution [11] of the above Equation (1) is: 

ℎ = ℎ0 + (ℎ0 − ℎ1)𝛺(𝜇, 𝜉)  

where: 

𝛺(𝜇, 𝜉) = ℓ𝐹(𝜉) − 𝛷(𝜉), 𝛷(𝜉) = 𝑒𝑟𝑓𝑐(𝜉), 

𝜉 =
𝑥

2√𝐾ℎ1𝑡
𝑆

, ℓ = (ℎ0 − ℎ1)/ℎ1, 𝜇 = ℎ1/ℎ0, 

𝐹(𝜉) = −
1

𝜋
+ (

1

2
+

1

𝜋
)𝛷 −

1

√𝜋
(1 − 𝛷)𝜉𝑒−𝜉2

+
1

𝜋
(1 − 𝑒−2𝜉2

) −
1

2
𝛷2. 

 

2.2. Fuzzy Model 

We write Εquation (1), in its fuzzy form as follows: 

𝜕ℎ̃

𝜕𝑡
=

𝐾

𝑆

𝜕

𝜕𝑥
(ℎ̃

𝜕�̃̃�

𝜕𝑥
) =

𝐾

𝑆
{(

𝜕ℎ̃

𝜕𝑥
)2 + ℎ̃

𝜕2ℎ̃

𝜕𝑥2
}, (2) 

with the new boundary and initial conditions:  

Initial conditions               Boundary conditions  

𝑡 = 0, ℎ̃(𝑥, 0) = ℎ̃0, 𝑡 > 0, ℎ̃(0, 𝑡) = ℎ̃1, ℎ̃
𝑥→∞

(𝑥, 𝑡) = ℎ̃0 (3) 
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By converting the aforementioned fuzzy problem into a system of second order crisp 

boundary value problems—(referred as the corresponding system for the fuzzy problem—

and applying the theory of [18,35,39,40], we are able to solve the fuzzy problem (2) subject 

to the boundary and initial conditions (3). As a result, for the fuzzy problem, eight crisp 

BVPs systems are feasible under the identical initial and boundary conditions. 

Note: We shall now turn our attention on the first system’s solution. as it offers a 

practical solution to the case of the lake refilling the aquifer. 

2.3. Solution of the First System 

The nonlinear one dimensional horizontal flow equations related to the first case (left 

boundary) and to the second case (right boundary) are provided with the following ex-

pressions: 

First case Second case  

𝜕ℎ−

𝜕𝑡
=

𝐾

𝑆
{ℎ−

𝜕2ℎ−

𝜕𝑥2
+ (

𝜕ℎ−

𝜕𝑥
)2} 

𝜕ℎ+

𝜕𝑡
=

𝐾

𝑆
{ℎ+

𝜕2ℎ+

𝜕𝑥2
+ (

𝜕ℎ+

𝜕𝑥
)2} 

(4) 

3. Results and Discussion 

We have used the data of Lockington, (1997) [5] that means K = hydraulic conductiv-

ity = 20m/d, S = effective porosity = 0.27, h1 = 3m, h0 = 2m. For the first case the solution is 

[11]: 

ℎ
−(𝜇, 𝜉) = ℎ0

− + (ℎ0
− − ℎ1

−)𝛺(𝜇, 𝜉)  

Figure 1 illustrates the water level profiles for t = 5d of the new analytical method vs 

Runge-Kutta method (reference solution) and for α = 0, 1 value. The two methods ap-

proach each other closely. In addition, the water table in a period of 5 days approaches 

125 m in length. If we consider also the hydraulic conductivity value (K = 20 m/d) the 

results are absolutely reasonable regarding the physical problem. Figure 2 illustrates the 

stored volume variation vs time and Figure 3 illustrates the membership function of 

�̃�(𝑥, 𝑡) for t = 5d. According to possibility theory [37–38] every function [�̃�] estimates the 

crisp function V and the α-cut {�̃�}𝑎 = [𝑉𝑎
−, 𝑉𝑎

+] should be interpreted as the confidence 

intervals of V with a probability 𝑝 ≥ 1 − 𝑎. In this regard in Figure 3 it is seen that for α = 

0.05 the value of water volume lies in the interval [5.226, 14.310] with a probability higher 

than 95% according to the possibility theory. 
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Figure 1. Water level profiles for t = 5d. 

 

Figure 2. Stored volume variation vs. time. 

 

Figure 3. Membership function of �̃�(𝑥, 𝑡). 

4. Conclusions 

Undoubtedly, groundwater flow problems involve a number of ambiguities and un-

certainties making the use of differential equations even more difficult to solve. However, 

nowadays, the opportunity is given through the fuzzy partial differential equations theo-

ries to include these uncertainties in the final calculations and to provide more accurate 

results supporting the sustainability of groundwater as well as the researchers and engi-

neers to make better decisions and plannings. 

This work presents an innovative analytical solution in the nonlinear Boussinesq 

equation which describes the groundwater unsteady flow. According to the results the 

proposed solution completely coincides with the Runge-Kutta method results which used 

as reference solution, for comparison reasons, in order to prove the accuracy and reliabil-

ity of the proposed analytical solution. The volume membership function (Figure 3) could 

support decision makers and planners with higher degree of confidence, than the previ-

ous years, thanks to the possibility theory. 
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