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SCOPE OF THE WORK

 𝐸 = 𝑘(𝑃 − 𝑃0),LINEAR APPROACH

 However, in certain arid or semiarid 
climates, annual precipitation may be lower 
than the runoff threshold  -> yield negative 
runoff.

 In this article, an adaptive fuzzy based 
regression is proposed to represent the non-
constant behaviour of the relationship
between precipitation and runoff at the 
annual scale:
 For high precipitation, beyond a fuzzy threshold, 

a conventional (crisp) relation between 
precipitation and runoff is established,

 For low precipitation, a curve with lower slope 
must be derived. 

 Between these curves, and for a precipitation 
range close to the runoff threshold, each curve 
holds to some degree. 



FUZZY RULE BASED SYSTEM (1)

Ru(λ):   If x1 is A1
λ and x2 is A2

λ…….and xN is AN
λ

then y = αλ0 + αλ1x1 + ……+ αλΝxN

An
λ : fuzzy set

λ: order of the rule, λ = 1, 2,…..L

L: number of the fuzzy rules

x: independent variable

N: number of the independent variables

y: dependent variable  

FUZZY COEFFICIENTS

MODEL 2

CRISP COEFFICIENTS

MODEL 1



FUZZY RULE BASED SYSTEM (3)

 Two rules, one key variable

 Two regions without uncertainty – Two conventional regression 

equations  (or fuzzy regressions)

 Between two crisp regions there is a grey (fuzzy) region where both 

rules are activated to some degree.

 Grey (fuzzy) region: between β1 and β2

( ) ( )1 2 1P P + =

Grey  

region

Simplified architecture of the 

membership functions



MODEL 1
( )10 11y a a P= +IF P (annual precipitation) is low THEN y (annual Runoff) is   1 

( )20 21y a a P= +IF P (annual precipitation) is high THEN y (annual Runoff) is 
                      

2 

(MODEL 1)
 3 

 4 

In this model, the coefficients ( )10 11 20 21, , ,a a a a are crisp numbers, so finally a 5 

nonlinear crisp curve is produced as follow: 6 
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Although the fuzzy reasoning is used the output is a crisp curve



MODEL 2

IF P is low THEN Annual Runoff, yis ( )10 11y a a P= +  1 

IF P is high THENAnnual Runoff,y is ( )20 21y a a P= +
   (MODEL 2) 

2 

 3 

In this new model, where the coefficients ( )10 11 20 21, , ,a a a a are fuzzy symmetrical 4 

triangular numbers, so a nonlinear fuzzy curve is produced. Hence, the problem 5 

concludes to the following equation: 6 

( )( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )

1 10 11 2 20 21

1 2

1 10 2 20 1 11 2 21

P a a P P a a P
y

P P

P a P a P P a P P a

 

 

   

+ + +
= =

+

+ +   +  

 (7) 7 

A fuzzy band is produced where all the data must be included within the 

produced fuzzy band



First case, low precipitation

Second  case, high precipitation



Grey zone

β1≤P≤ β2



One grey region, 3rd case

Kosko and Tzimopoulos: overlap at least 25%
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MODEL 2

Low precipitation

Crisp region

Fuzzy regression

“simple”

Fuzzy regression of 

Tanaka

Grey region High  precipitation

Crisp region

Fuzzy regression

“simple”

Fuzzy regression of 

Tanaka



MODEL 2

Grey region

In this new model, where the coefficients ( )10 11 20 21, , ,a a a a are fuzzy symmetrical 1 

triangular numbers, so a nonlinear fuzzy curve is produced. Hence, the problem 2 

concludes to the following equation: 3 
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All the data must be 

included within the 

produced fuzzy band

Goal:

Minimum spread of the 

produced fuzzy band



TWO MODELS

 Coefficients: Crisp numbers

 Coefficients: least squares 
method

 If the thresholds β1 and β2 are 
known, the coefficients can be 
determined on the basis of the 
least squares method

 PSO: A population of possible 
solutions (containing β1 and β2) is 
modulated.

 Output: Crisp number

 Coefficients: Fuzzy  numbers

 Coefficients: Minimum fuzzy band

 If the thresholds β1 and β2 are 
known, the coefficents can be 
determined. -> Concludes to a 
LINEAR PROGRAMMING 
PROBLEM

 PSO: A population of possible 
solutions (containing β1 and β2) is 
modulated.

 Output: Fuzzy number

Model 1 Model 2



PARTICLE SWARM OPTIMIZATION METHOD (2)

PSO ALGORITHM

1. Initialize a population array of particles with random positions and velocities 
on D dimensions in the search area!

2. Loop!

3. For each particle evaluate the desired optimization fitness function in D 
variables!

4. Compare particle fitness evaluation with its best previously visited position 
(pi)! If the current value is better than pi, then set pi equal to the current value!

5. Identify the particle in the neighborhood with the best success so far, and 
assign its index to the variable pg!

6. Change the velocity and position of the particle according to the following 
equation:



PARTICLE SWARM OPTIMIZATION METHOD (3)

PSO ALGORITHM

New Position

7. If a criterion is met (usually a sufficiently good

fitness or a maximum number of iterations), exit

loop!

8. End loop!
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 E’ (coefficient of efficiency Nash-Sutcliffe) = 0.95 vs 0.89 
(conventional regression)

 Curves: expected monotonic form

CASE STUDY (1) MODEL 1

 1 

Figure 2. The proposed method and the conventional regression applied in order to assess a relation 2 
between annual precipitation and runoff in the case of Rio Piedras 3 

The proposed method recognizes the grey region between regarding the 4 

precipitation  ( 524.06,    1,013.43) that is, a large non linear behavior. The produced 5 

equation is: 6 

𝐷𝐼𝐶𝐻 𝑃 = 7 

𝜇1 𝑃  −522.1599   + 𝜇2 𝑃  35.8763  + 𝜇1 𝑃  0.1287 ⋅ 𝑃 + 𝜇2 𝑃 0.3828 ⋅ 𝑃 8 



• Area: The Piedras River is a coastal river in the southwest of Spain. It drains a 

contributing basin of 550 km2, running from north to south along 40 km in the Huelva 

province. Mean annual precipitation is 574 mm/yr and mean annual runoff is 106 mm/yr. It 

is regulated by the Piedras and Los Machos reservoirs, which are operated for water supply 

and irrigation. 

Discussion-conclusions

Figure 2. The proposed method and the conventional regression applied in order to assess a relation
between annual precipitation and runoff in the case of Rio Piedras

( )

( )( ) ( )( ) ( ) ( )1 2 1 2522.1599?  35.8763? .1287 0  .3828
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IMPROVED RESULTS

 maximum velocity.

Psaropoulos in R.Martíet al. (eds.), Handbook of Heuristics,

DOI 10.1007/978-3-319-07153-4_22-1



Figure 5. The proposed method with fuzzy regression curves  applied in order to assess a fuzzy
relation between annual precipitation and annual runoff in the case of Rio Piedras.
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All the data must be included 

within the produced fuzzy band
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Aguas River Precipitation-

Runoff relationship

The Aguas river is a short coastal river in the south of 
Spain, running along 65 km through the east of the 
province of Almería. The contributing basin is 547 
km2. The climate is semiarid, with mean annual 
precipitation of 334 mm/yr and mean annual runoff of 41 
mm/yr. 



CONCLUSION

• Two hybrid methods with no linear behavior
• The main difference between model 1 and models 2 is that in the last model

all the data must be included within the produced fuzzy estimation of the
annual runoff.

• The proposed method is suitable to estimate the annual water yield, but it is
not intended to assess the peak flow under a significant rainfall. However,
the second model requires more computational time.

• with our approach, we are able to describe the Precip-Runoff behavior
precisely in the most critical years, with minimum precipitation. This is
very relevant for drought management.



 Thanks for your attention! MadridXanthi
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