APPLYING A FLEXIBLE FUZZY ADAPTIVE REGRESSION TO RUNOFF ESTIMATION

Mike SPILIOTIS¹, Luis GARROTE²

¹ Department of Civil
Engineering, School of Engineering, Democritus University of Thrace, Greece ²Department of Civil Engineering: Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, Spain

SCOPE OF THE WORK

• $E = k(P - P_0)$,LINEAR APPROACH

- However, in certain arid or semiarid climates, annual precipitation may be lower than the runoff threshold -> yield negative runoff.
- In this article, an adaptive fuzzy based regression is proposed to represent the non-constant behaviour of the **relationship** between **precipitation** and **runoff** at the annual scale:
 - For high precipitation, beyond a fuzzy threshold, a conventional (crisp) relation between precipitation and runoff is established,
 - For low precipitation, a curve with lower slope must be derived.
 - Between these curves, and for a precipitation range close to the runoff threshold, each curve holds to some degree.

FUZZY RULE BASED SYSTEM (1)

- Two rules, one key variable
- Two regions without uncertainty Two conventional regression equations (or fuzzy regressions)
- Between two crisp regions there is a grey (fuzzy) region where both rules are activated to some degree.
- Grey (fuzzy) region: between β_1 and β_2

MODEL 1

IF P (annual precipitation) is low THEN y (annual Runoff) is $(y = a_{10} + a_{11}P)$ IF P (annual precipitation) is high THEN y (annual Runoff) is $(y = a_{20} + a_{21}P)$ (MODEL 1)

Although the fuzzy reasoning is used the output is a crisp curve

MODEL 2

IF P is low THEN Annual Runoff, yis $(\tilde{y} = \tilde{a}_{10} + \tilde{a}_{11}P)$ IF P is high THENAnnual Runoff, y is $(\tilde{y} = \tilde{a}_{20} + \tilde{a}_{21}P)$ (MODEL 2)

A fuzzy band is produced where all the data must be included within the produced fuzzy band

First case, low precipitation

One grey region, 3rd case

Kosko and Tzimopoulos: overlap at least 25%

MODEL 2

Low precipitation

Grey region

Crisp region Fuzzy regression "simple" Fuzzy regression of Tanaka

High precipitation

Crisp region Fuzzy regression "simple" Fuzzy regression of Tanaka

All the data <u>must be</u> <u>included</u> within the produced fuzzy band Goal: Minimum spread of the produced fuzzy band

Grey region

In this new model, where the coefficients $(\tilde{a}_{10}, \tilde{a}_{11}, \tilde{a}_{20}, \tilde{a}_{21})$ are fuzzy symmetrical triangular numbers, so a nonlinear fuzzy curve is produced. Hence, the problem concludes to the following equation:

 $y = \frac{\mu_1(P)(\tilde{a}_{10} + \tilde{a}_{11}P) + \mu_2(P)(\tilde{a}_{20} + \tilde{a}_{21}P)}{\mu_1(P) + \mu_2(P)} = \mu_1(P)\tilde{a}_{10} + \mu_2(P)\tilde{a}_{20} + \mu_1(P)\cdot P\cdot \tilde{a}_{11} + \mu_2(P)\cdot P\cdot \tilde{a}_{21}$

TWO MODELS

Model 1

- Coefficients: Crisp numbers
- Coefficients: least squares method
- If the thresholds β_1 and β_2 are known, the coefficients can be determined on the basis of the least squares method
- PSO: A population of possible solutions (containing β_1 and β_2) is modulated.
- Output: Crisp number

Model 2

- Coefficients: Fuzzy numbers
- Coefficients: Minimum fuzzy band
- If the thresholds β_1 and β_2 are known, the coefficients can be determined. -> Concludes to a LINEAR PROGRAMMING PROBLEM
- PSO: A population of possible solutions (containing β_1 and β_2) is modulated.
- Output: Fuzzy number

PARTICLE SWARM OPTIMIZATION METHOD (2) PSO ALGORITHM

- **1.** Initialize a population array of particles with random positions and velocities on D dimensions in the search area!
- 2. Loop!
- 3. For each particle evaluate the desired optimization fitness function in D variables!
- 4. Compare particle fitness evaluation with its best previously visited position (p_i)! If the current value is better than p_i, then set p_i equal to the current value!
- 5. Identify the particle in the neighborhood with the best success so far, and assign its index to the variable $p_g!$
- 6. Change the velocity and position of the particle according to the following equation:

PARTICLE SWARM OPTIMIZATION METHOD (3) PSO ALGORITHM

New Position

CASE STUDY (1) MODEL 1

Figure 2. The proposed method and the conventional regression applied in order to assess a relation between annual precipitation and runoff in the case of Rio Piedras

The proposed method recognizes the grey region between regarding the precipitation (524.06, 1,013.43) that is, a large non linear behavior. The produced equation is:

DICH(P) =

 $\mu_1(P)(-522.1599) + \mu_2(P)(35.8763) + \mu_1(P) 0.1287 \cdot P + \mu_2(P)0.3828 \cdot P$

- E' (coefficient of efficiency Nash-Sutcliffe) = 0.95 vs 0.89 (conventional regression)
- Curves: expected monotonic form

Discussion-conclusions

 $DICH(P) = \mu_1(P)(-522.1599?) + \mu_2(P)(35.8763?) + \mu_1(P) \quad .1287 \cdot P + \mu_2(P)0.3828 \cdot P$

Figure 2. The proposed method and the conventional regression applied in order to assess a relation between annual precipitation and runoff in the case of Rio Piedras

• Area: **The Piedras River** is a coastal river in the southwest of Spain. It drains a contributing basin of 550 km², running from north to south along 40 km in the Huelva province. Mean annual precipitation is 574 mm/yr and mean annual runoff is 106 mm/yr. It is regulated by the Piedras and Los Machos reservoirs, which are operated for water supply and irrigation.

IMPROVED RESULTS from the weighted average of best positions of Eq. (11). The user-defined value v_j^{max} is usually equal to a fraction of the search space along the *j*-th coordinate direction, i.e.,

$$v_j^{\max} = \lambda_j \left(x_j^{\max} - x_j^{\min} \right), \qquad j \in D, \ \lambda_j \in (0, 1).$$
(13)

Psaropoulos in R.Martí et al. (eds.), *Handbook of Heuristics*, DOI 10.1007/978-3-319-07153-4_22-1

Figure 5. The proposed method with fuzzy regression curves applied in order to assess a fuzzy relation between annual precipitation and annual runoff in the case of Rio Piedras.

The Aguas river is a short coastal river in the south of Spain, running along 65 km through the east of the province of Almería. The contributing basin is 547 km². The climate is semiarid, with mean annual precipitation of 334 mm/yr and mean annual runoff of 41 mm/yr.

CONCLUSION

- Two hybrid methods with no linear behavior
- The main difference between model 1 and models 2 is that in the last model all the data must be included within the produced fuzzy estimation of the annual runoff.
- The proposed method is suitable to estimate the annual water yield, but it is not intended to assess the peak flow under a significant rainfall. However, the second model requires more computational time.
- with our approach, we are able to describe the Precip-Runoff behavior precisely in the most critical years, with minimum precipitation. This is very relevant for drought management.

Xant^A Thanks for your attention!

