

A smartphone-addressable aptamer-based lateral flow

biosensor for ochratoxin A

Electra Mermiga¹, Varvara Pagkali¹, Christos Kokkinos¹, Anastasios Economou¹

¹Analytical Chemistry Lab, Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15771, Greece

Ochratoxins

Metabolites of many different species of Aspergillus and Penicillium

Ochratoxin A:

- Found in contaminated food and crops
- ✓ Recognized as potentially harmful to humans and animals.

*Source: Xianjiang Li, Wen Ma, Zhiyong Ma, Qinghe Zhang,Hongmei Li,The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities, *Molecules*, **2021**, 26, 6928

Toxicity of Ochratoxin A:

Group 2B (potential carcinogenic to humans)

*IARC (International Agency for Research on Cancer) 1993

Maximum Levels of OTA in Foodstuffs

Foodstuffs	Maximum levels (µg/kg) [*]	
Unprocessed cereals	5.0	
Roasted coffee	3.0	
Wine	2.0	
Processed cereal-based foods for infants and young children and baby foods	0.5	
Seeds	5.0	
Cocoa powder	3.0	

*REGULATION (EC) No 1881/2006 of 19 December 2006 (setting maximum levels for certain contaminants in foodstuffs) **REGULATION (EU) 2022/1370 of 5 August 2022 (amending Regulation (EC) No 1881/2006 as regards maximum levels of ochratoxin A in certain foodstuffs)

Analytical Methods for Ochratoxin A detection

	+	-
Chromatographic Techniques (thin-layer chromatography, liquid chromatography, gas chromatography, LC-MS/MS)	high accuracyrepeatabilitysensitivity	 expensive equipment time-consuming sample preparation trained personnel
Enzyme-Linked Immunosorbent Assays (ELISA) Immunochromatographic assay	 convenient sensitive easy to operate 	 cross reactivity requirement of expensive and limited stability antibodies
Biosensors (Optical, Electrochemical)	 small size equipment sensitivity simultaneous analysis portable devices 	 integration of all optical and electrical components on the same chip

Aptamer-based sensors

Aptamers are short chain oligonucleotides that exhibit binding affinity to selected target analytes

Advantages of aptamers

- ✓ high stability
- easily synthesized
- ✓ commercially available
- ✓ thermoresistant
- ✓ potential of modification with a variety of chemical groups such as *biotin, thiols, enzymes*

Gold nanoparticles

AuNPs react with the sulfhydryl or amino groups of aptamers to form Au-S or Au-N bonds.

AuNPs aptasensors for OTA determination are classified into:

- □ fluorescence aptasensors,
- lettrochemical aptasensors,
- colorimetric aptasensors and
- □ chemiluminescence aptasensors.

Fabrication of the aptamer-based biosensor strip

The lateral flow strip consists of: **a**) sample pad, **b**) conjugate pad, **c**) nitrocellulose (NC) membrane, **d**) absorbent pad **Nitrocellulose membrane** — Test-line and control lines

Based on a lateral flow assay using conjugates of OTA-specific aptamer with gold nanoparticles (AuNPs)

Working Principle of the Assay for OTA Detection

Support OTA antigen

Optimization of Experimental Parameters

Testing:

a) Two OTA specific aptamers (Aptamer 1 and Aptamer 2)

Aptamer 1: 5`-C6 S-S-GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA AAA AAA AAA AAA AAA AAA AAA-3`; Aptamer 2: 5`-C6 S-S- AAA AAA AAA AAA AAA AAA AAA GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3`

- b) the volume ratio of the aptamer to AuNPs for the formation of OTA aptamer-AuNPs conjugate,
- c) the concentration of streptavidin and probe 1 for the test line,
- d) the volume of the OTA aptamer/AuNPs conjugate applied on conjugate pad.

Analytical Performance

Semi-quantitative LOD 0.04 ng/ml

Conclusions

A colorimetric lateral flow assay, based on aptamer-AuNPs conjugates, was developed for OTA.

- □ linear range for OTA from 0.05 to 50 ng/mL
- □ limit of detection 0.04 ng/mL.
- assay time 30 min
- □ high sensitivity
- □ simple
- rapid
- Iow cost

Future prospects

The application of this assay is ongoing in our laboratory for OTA detection in real samples and similar approaches are under way for selected antibiotics.