computer sciences and

7
mathematics forum @)\Py

Proceeding Paper

Generalized Integral Transforms and Fractional Calculus
Operators Involving a Generalized Mittag-Leffler

Type Function *

Ankit Pal

Department of Mathematics, School of Advanced Sciences & Languages, VIT Bhopal University,

Sehore 466114 , Madhya Pradesh, India; ankit.pal@vitbhopal.ac.in

t Presented at the 1st International Online Conference on Mathematics and Applications; Available online:
https:/ /iocma2023.sciforum.net/.

Abstract: In this work, we consider a generalized Mittag-Leffler type function and establish several
integral formulas involving Jacobi and related transforms. We also establish some composition
of generalized fractional derivative formulas associated with the generalized Mittag-Leffler type
function. Additionally, certain special cases of generalized fractional derivative formulas involving
Mittag-Leffler type function have been corollarily presented.
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1. Introduction and Preliminaries

The Mittag-Leffler function was introduced by the Swedish mathematician Gosta
Mittag-Leffler [1] in 1903 and can be defined by

[e9) Zn
check for Ey(z) = Z Tun+1) R(v) >0 (1)
updates n=0
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where u;, vj € Ci=12...,p,j=12,...,q, and the coefficients Uy,..., U, € Rt and
Vi,...,Vy € RT satisfying the condition

fw—iui>—1. )

In particular, when U; = V; = 1 (i=12,...,p;j=1,2,...,9), (4) reduces to

(u1,1),...,(up,1)‘z} _ I T [ul,...,up
(01,1),...,(vq,1) H?:l F(Z)]) ptq

Z] , (6)

01,...,Uq

where , F;(-) is the generalized hypergeometric function [5].
In the present work, we introduce a Mittag-Leffler type confluent hypergeometric
function due to Ghanim and Al-Janaby [6]:

a0y — v Le)TGpm + ) 2"
MU (2) = X o (um s 0) ml” @

where v,1,v,u € Cand R(v) > 0. It is worth pointing out that series representation of (7)
yields a variety of connections with special functions, including confluent hypergeometric
function and generalized Mittag-Leffler functions (1)—(3).

2. Jacobi and Related Integral Transform
The Jacobi integral transform [7] p. 501 of a function f(z) is defined as follows:

JoDf@)im) = |

a2t ) f) ®

where min{R(«a), R(B)} > —1;n € Ny and provided that the integral on the right hand side

in (8) exists. Here, PP ) (z) is the classical orthogonal Jacobi polynomial [8] (Chapter 10)
defined by

PP (2) = (-1)" PP (—2)

_ (a+mn -ma+p+n+1jl—z
() <9>

The Jacobi polynomials Pr(l'x’/S ) (z) contain, as their special cases, such other classical
orthogonal polynomials as (for example) the Gegenbauer polynomials C;(z), the Legendre
(or spherical) polynomials P,(z), and the Tchebycheff polynomials Ty (z) and U, (z) of the
first and second kind (see, for details, [9]). In fact, we have the following relationships with
the Gegenbauer polynomials Cj,(z) and the Legendre polynomials P, (z):

c+n—\"1req4n— 11
Gt = (T TR) (T b D) (10
and
Pu(z) = C2(2) = P29 (2), a1

respectively. Thus, by applying the relationships in (10) and (11) and ignoring altogether
the constant binomial coefficients occurring in (10), the parameters « and f3 in (8) earlier
can be suitably specialized to define the corresponding Gegenbauer transform G(©) [f(z); n]
and the corresponding Legendre transform L[f(z); ] as follows:
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- %) - (2C tn— 1)](%,6%) [F(2);n] (12)
= /1 (1—22)°72 CS(2) f(z)dz (%(c) > —%;n € No), (13)
and

1 1
Lif@)n] = G f(a)nl = [ Pua)f()dz, (n € No). (14)

-1

Lemma 1 ([10]). The Jacobi transform of the power function z~ is given by
1 -
[ a2t R ot = 25t (Y o)
-1

% F1:2,l

o:—na+p+n+L1—-w
1:1,0

01+d: a+1, -—

1, 2} ) (15)

where min{R(5,), R(62)} > O;w € C;n € Ny and F[" (-) is the familiar Kampé de Fériet
function [11].

Theorem 1. The following Jacobi transform formula holds true:

(@B) [ow—1 A g7 (1N | — patptl (&1 o T ()T (7k + )
J {z MV,V(uz),n}_2++( y )B(“H’ﬁﬂ)gr(y)r(umy)

% F1:2,1[0¢+1:n,0¢+,3+n+1;1wk

k
u
1:1,0 a+p+2: a+1;, — 1’2} (16)

H/

where w € C;n € Ng and min{R(a), R(B)} > -1, |u| < 1.

Proof. To prove Theorem 1, we first apply Jacobi transform (8) in conjunction with (7).
Then, upon reversing the order of integration and summation and make use of Lemma 1,
this leads to the right hand side of Theorem 1. [

Corollary 1. Under the conditions stated in Theorem 1 and settinga = p = ¢ — %, the following
Gegenbauer transform formula holds true:

Gl Z“JflMZj;(uz);n} _ X <2c +: — 1>B(c+ 1. N 1) 5 M
k=0

272 (T (vk + p)
1:2,1 C+%:—n,26+n;l—w—k ufk
X F];1’0|: 2C+1: C+%, _ 1/2 k'/ (17)

where w € C;n € No, R(c) > —3, [u| < 1.

Corollary 2. Under the conditions stated in Theorem 1 and setting « = B = O orc = %, the
following Legendre transform formula holds true:

00 k
L [z“’_lMZfZ(uz);n] =2)"

W (nk+7) 121[1:—nn+11—w—k
—r s 27 I X F -y
= T(NT(

I(
T(y)T(vk+pu) 110 2: 1, -

u
1,2} o

where w € C;n € Ny, [u| < 1.
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3. Fractional Derivative Formulas

In this section, we establish several fractional derivative formulas for the Mittag-Leffler
type function. With this purpose, we recall the following pairs of left-sided and right-sided

hypergeometric fractional derivative operator Dgf * and D"

Definition 1 ([12]). The left-sided hypergeometric fractional integral operator I{)\f"‘ and cor-

responding left-sided hypergeometric fractional integral operator Dé‘f * are defined, for x >
0,A,0,k€C, by

fofa

A _ T Al e b
(zo+ f) ™) =T /0 (x — LR (/\ +o,—K A1 x) £(t) dt, (18)
where R(A) > 0 and
d n
A0, K _ —A,—0,A+K _ [ % —A+K,—0—KA+K—N
()00 = (3 5p) = (1) e =g,
where R(A) > 0;n = [R(A)] + 1 and [x] denotes the largest integer in the real number x.

Remark 1. For o = —A, 0 = 0, the left-sided hypergeometric fractional integral operator D{)\f "
coincides with the familiar Riemann-Liouville fractional derivative operator g D} ' and the left-sided
Erdélyi-Kobar fractional derivative operator EKD(’)\f as given below (see [12]):

(o5 1) o = (wrber) 0= (5) {ram | oot} 09

n "X Atk
(2627£) () = (ex22) () = 2 (— ) {r(nl_ T o dt}, 0
where x > 0;R(A) > 0;n = [R(A)] + 1.

and

Definition 2 ([12]). The right-sided hypergeometric fractional integral operator I;\o'f”‘ and cor-

responding right-sided hypergeometric fractional integral operator DMTX are defined, for x >
0,A,0,k€C, by

X

(Igi"‘ f) () =7 L / Tt =0 AR (/\ o, -GNl — ?) f(tydt, (1)

(A)
where R(A) > 0 and

(DX ) (x) = (T2 ) () = (—;;)"{ (T ) (@)

where R(A) > 0;n = [R(A) + 1] and [x] denotes the largest integer in the real number x.

Remark 2. For ¢ = —A,0 = 0, the right-sided hypergeometric fractional integral operator
DM* coincides with the Weyl fractional derivative operator D2, _ and the right-sided
Erdélyi-Kobar fractional derivative operator ¢ KDoAc;’i as given below (see [12]):

(P2 ) 0 = (wob 1) o0 = (-5 ) { ot [ i ), @

(P27) 0 = (2 ) 0 =2 () (e [ amam ) @
where x > 0;R(A) > 0;n = [R(A)] + 1.

and
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We need to recall the following Lemma 2 [12] to prove the Theorems 2 and 3.

Lemma 2. Let A, 0, «, 10 € Cand x > 0, R(A) > 0. Then each of the following hypergeometric
fractional derivative formulas holds true:

Aok qu—1 _F(V)F(V+A+U+K) o—1
(Do+ # )(x)— T(p+o)T(p+x) S @)

where R(p) > —min{0, R(A + 0 +«)} and

Aok qu—1 _ r(l _U_V)r(l _V+A+K) o—1
(P 0 ) ) = = ra e @)

where R(p1) < 1+ min{—R(c+x«), R(A +x)}.

Theorem 2. Let A, 0, %, u,v,1,v € Cand x > 0,R(A) > 0,R(v) > 0. Then the following
left-sided hypergeometric fractional derivative formula holds true:

[Dgf,x t}l—lMZ:;(utl/)} (x) = xu+a—111:gf;; ¥, [(72;7);?;),)\(;1;5,)1/) uxv:|, (26)
where R(p) > —min{0, R(A + 0 +x)}
Proof. Using (7), we have
|:D/\tTK UM (ut”) ] i }l )T (g + ) u" y (D(/)\f,x tanr;tfl)(x). 27)
L(y)I(vn+ p) n!

Using (24), this leads to the right hand side of (26). O

Corollary 3. Under the conditions already stated in Theorem 2 and setting o = —A and o = 0,
the following Riemann-Liouville fractional derivative formula and the left-sided Erdélyi-Kobar
fractional derivative formulas holds true:

r
D M )] () = A Ml (), 2

K jU— i v - T et ,
[l 0 Mt ue)] () = 201 e (T S

Theorem 3. Let A, 0, %, 1, v,1,v € Candx > 0,t > 0,R(A) > 0, R(v) > 0. Then the following
right-sided hypergeometric fractional derivative formula holds true:

ux"] . (29)

o _ o1 T(p) (o), M=o —puv),1—p+A+xv)| u
[DA v 1M)”(t1/)](x)_xﬂ+ 1@ 3T3[ (mv),1—uv),Ql—pu+x—o,v) x"}’ (30)

where R(pu) < 1+ min{—RN(c +«), R(A +x)}

Proof. Using (7), we have

|:D/\(TK = 1M’”< )} i mﬁz X (DQ;‘LK tﬂ,vn,l) (x). (31)

Using (25), this leads to the right hand side of (30). O
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Corollary 4. Under the conditions already stated in Theorem 3 and setting 0 = —A and o = 0, the
following Weyl fractional derivative formula and the right-sided Erdélyi-Kobar fractional derivative
formulas holds true:

[wDd =Ml ()] () = x’**l% ¥ {(”EZI);()}Jf ;{ﬁ;‘/) ﬂ (32)
ot g ()]0 = | OS] e
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