Physicochemical, Microbiological and Sensory Characterization of Halloumi Cheese Fortified with Garlic (*Allium sativum*) and Pepper (*Piper nigrum*)

Aravindi Nipunika Gamage, Rajivini Jeyasiri, Dinelka Dananji Hettiarachchi, Sachini Sandaranga Munasinghe, Nadeesha Dilrukshi *

✓ Halloumi cheese ?

 Rising awareness on the health benefits of Halloumi cheese ?

✓ Market trends?

Global Halloumi Cheese market < USD 454.7 million in 2021. The market is further expected to grow in the forecast period of 2023-2028 at a CAGR of 10.5% to reach over USD 827.7 million by 2027.

Objectives

- To develop a cow's milk Halloumi cheese fortified with Garlic and Pepper
- To evaluate the,
- \checkmark physicochemical properties
- $\checkmark\,$ microbiological shelf life and
- \checkmark consumer perception,

of Halloumi cheese fortified with Garlic and Pepper

Manufacturing Process

Pasteurization of Heat the curd by placing in the cow milk whey solution Cow milk was Curds were heated to a 05 01 03 pasteurized and cooled temperature about 80 °C for at least 15 min to coagulation temperature **Preparation of** Add CaCl₂ & Rennet Salting & adding the Garlic & **Pepper & Garlic** pepper powder powder After coagulation, curd 04 02 were placed in mold Curd were Kept in 15% brine Pepper & Garlic and pressed until whey powder was mixed solution for 1hour was removed after oven drying and powdering

Finally Garlic & Pepper powder were added on the surface

Physicochemical Analysis

Table 1: Measured Physicochemical Parameters & Methods

Parameter	Method
Total solid (%)	Oven Dry (105 ⁰ C, 16hrs)
Protein (%)	Kjeldahl
Fat (%)	Soxhelt
Moisture (%)	Oven Dry (105ºC, 3hrs)
Ash (%)	Muffle Furner
рН	pH Meter
Textural properties	

Cohesiveness Hardness Chewiness Gumminess

Color parameters

L value, a value, b value

Hunter Lab colour Meter

TX 700 Texture

Analyzer

Microbiological Analysis

Sensory Evaluation

- Control Sample (nonfortified sample)
- Fortified Sample (with a mixture of garlic & pepper powder)

- 30 participants
- 20-30 years old

- XL STAT
- SPSS Software

Results and Discussion

Physicochemical Analysis

Figure 1. Chemical composition of Halloumi Cheese during the storage time

There was a significant different (p < 0.05) for moisture, total solid, protein, fat, ash content between the cheese samples with storage time.

Physicochemical Analysis Con.

Figure 2. pH value of Halloumi Cheese during the storage time

• There was a significant different (p < 0.05) for pH value between the cheese samples with storage time.

Texture Profile Analysis

Figure 3. Texture Profile Analysis of Halloumi Cheese during the storage time

 There was a significant different (p < 0.05) for Hardness, Chewiness, Gumminess, Cohesiveness between the cheese samples with storage time.

Colour Analysis

Figure 4. Colour characteristics of Halloumi Cheese during the storage period

• There was a significant different (p < 0.05) for L value, a value, b value between the cheese samples with storage time. 12

Microbiological Analysis

Total bacteria count

Table 2: Microbial count of totalbacteria during storage time

Storage time (Days)	Microbial count of total bacteria (log CFU/g)
1	2.51±0.03 ^d
10	2.71±0.09 ^c
20	2.70±0.02 ^c
30	3.77 ± 0.05^{b}
40	4.78±0.02 ^a

Figure 5. Growth curve of total bacteria during storage time

- Maximum permissible limit of total bacteria
- ---· Minimum permissible limit of total bacteria
 - Total bacteria count of current study

E. coli count

Table 3: Microbial count of *E. coli*during storage time

Storage time (Days)	Microbial count of <i>E. coli</i> (log CFU/g)
1	0.00 ± 0.00^{d}
10	$1.00\pm0.00^{\circ}$
20	$1.20\pm0.17^{\circ}$
30	1.88 ± 0.03^{b}
40	2.16±0.02 ^a

Values followed by different superscript letters indicate significant differences; tukey's test (*P*<0.05)

Figure 6. Growth curve of *E. coli* during storage time

- Maximum permissible limit of *E. coli*
- ___ Minimum permissible limit of *E. coli*
- *E. coli* count of current study

Yeasts and molds count

Table 4: Microbial count of yeasts& molds during storage time		
Microbial count of yeasts & molds (log CFU/g)		
0.00 ± 0.00^{e}		
1.10 ± 0.17^{d}		
1.42±0.10 ^c		
1.92 ± 0.08^{b}		
2.30 ± 0.04^{a}		

Values followed by different superscript letters indicate significant differences; tukey's test (*P*<0.05)

Figure 7. Growth curve of yeasts and molds during storage time

- Maximum permissible limit of yeasts and molds
- --· Minimum permissible limit of yeasts and molds
 - Yeasts and molds count of current study

S. aureus count

Table 5: Microbial count of <i>S. aureus</i> during storage time		
Storage time (Days)	Microbial count of <i>S. aureus</i> (log CFU/g)	
1	1.92±0.03 ^a	
10	1.63 ± 0.13^{b}	
20	1.59 ± 0.11^{bc}	
30	1.59 ± 0.11^{bcd}	
40	1.36 ± 0.10^{bcd}	

Figure 8. Growth curve of *S. aureus* during storage time

- Maximum permissible limit of *S. aureus*
- --· Minimum permissible limit of *S. aureus*
 - *S. aureus* count of current study

Values followed by different superscript letters indicate significant differences; tukey's test (*P*<0.05)

Values followed by different superscript letters indicate significant differences; tukey's test (*P*<0.05)

Sensory Analysis

Liking scores

Figure 10. Spider chart for consumer preference mean scores.

Conclusion

- pH value and moisture content of samples significantly declined and total solid, fat, protein and ash content were significantly increased with storage time.
- Lightness of samples (L*) significantly declined and yellow tone (parameter b*) and red tone(a*) were more pronounced during storage time.
- Cohesiveness of the sample significantly declined and Gumminess, Chewiness and Hardness were significantly increased with storage time.
- Microbiological Shelf life of Halloumi cheese 21 days at 10°C
- Halloumi cheese fortified with garlic (*Allium sativum L*) & pepper (*Piper nigrum L*) powder mixture improve the consumer preference by aroma, taste , texture & overall flavor.

References

- Atwaa, E.H., Ramadan, M.F. and Abd El-Sattar, E. (2020). Production of Functional Spreadable Processed Cheese Supplemented with Sweet Red Pepper Paste. Journal of Food and Dairy Sciences, [online] 11(5), pp.127–132. doi:10.21608/jfds.2020.102741.
- Mehyar, G.F. *et al.* (2017) 'Effects of chitosan coating containing lysozyme or natamycin on shelflife , microbial quality , and sensory properties of Halloumi cheese brined in normal and reduced salt solutions', (January), pp. 1–9. Available at: <u>https://doi.org/10.1111/jfpp.13324</u>.
- Stone, H. and Sidel, J.L., 2004. Introduction to sensory evaluation. *Sensory Evaluation Practices (Third Edition). Academic Press, San Diego*, pp.1-19.

THANK YOU