

Fabrication of aluminum-based hybrid nanocomposite for photocatalytic degradation of methylene blue dye: A techno-economic approach

Samuel Demarema¹, Amal Abdelhaleem¹, Shinichi Ookawara², and Mahmoud Nasr^{1,3}

¹Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, 21934, Egypt Egypt;*amal.elsonbaty@ejust.edu.eg ²Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; <u>ookawara.s.aa@m.titech.ac.jp</u> ³Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt; <u>Mahmoud.Nasr@just.edu.eg</u> <u>Correspondence: samuel.demarema@ejust.edu.eg</u>

Methylene Blue (MB) dye

- MB is a synthetic cationic thiazine dye
- Soluble in water (43,600 mg/L at 25 °C)

Figure 1. Industrial uses of MB dye

Toxicity of MB dye

- MB dye laden wastewater discharge in marine ecosystems:
- Low sunlight transmittance for photosynthesis by aquatic plants
- MB dye forms complex products leading to low dissolved oxygen and death of aquatic organisms
- MB is highly stable and cannot be removed by conventional wastewater treatment methods

Figure 2. Effects of MB dye exposure on humans

Advanced Oxidation Processes

- Advanced Oxidation Processes(AOPs) are treatment techniques aimed at mineralizing refractory organic pollutants in wastewater mainly using OH•.
- AOPs are efficient technologies in the elimination of pollutants such as MB from wastewater
- AOPs include;
 - Photocatalysis
 - > Ozonation
 - Photo-Fenton

Photocatalysis

- It is an AOP that utilizes catalysts and light irradiation for degradation of pollutants
- Heterogenous photocatalysis utilizes solid semiconductor catalysts such as TiO₂, ZnO for degradation of pollutants in aqueous phase
- Al₂O₃ has orderly nanopore structures and significant photocatalytic activity.
- Al₂O₃ can be synthesized from waste material such as aluminum cans, hence reducing costs in photocatalysis.
- Al₂O₃ nanocomposites can have higher photocatalytic activity due to formation of heterojunctions with other semiconductor materials.

Study Objectives

- 1. Synthesis of Al₂O₃-MgO nanocomposite
- Investigate the effect of operating parameters in MB photodegradation
- 3. Estimate the economic feasibility of photocatalytic degradation of MB dye using Al₂O₃-MgO

Methodology: Al₂O₃-MgO photocatalyst synthesis

Co-precipitation
 method was used for
 synthesis of Al₂O₃-MgO.

Figure 1. Synthesis method

Experimental setup

- Photoreactor with a 400 W metal halide lamp
- 60 min stirring in the dark to achieve adsorption/desorption. Light is turned on for MB dye photocatalytic degradation reaction.
- Initial(C_o) and final(C_f) concentrations of MB dye measured at 664 nm using UV-spectrophotometer.

Table 1. Experimental factors and limits for Box Behnken Design(BBD) in Response Surface Methodology(RSM)

Factor	Parameter	Unit	Levels			
			Low	Median	High	
Α	рН	-	3	7	11	
В	Time	min	60	120	180	
С	Photocatalyst dosage	mg/L	200	600	1000	
D	Initial MB dye concentration	ppm	10	55	100	

UV-DRS Analysis

- Band gap energy of Al_2O_3 -MgO is 3.50 eV.
- This is higher than that of Al_2O_3 (5.97 eV).

Figure 2. Absorbance plots for Al₂O₃-MgO

Initial catalyst tests

- Pure Al_2O_3 had photodegradation efficiency of 43,57% whereas Al_2O_3 -MgO had 72.72%.
- Al₂O₃-MgO has lower band gap energy than Al₂O₃ hence higher photocatalytic activity.

Figure 3. Initial photocatalyst test

Effect of operational parameters

Figure 4. Effect of operational parameters

Effect of operational parameters

- Figure 4a shows effect of pH. In acidic pH, MB exists as a neutral molecule(pH< pKa (3.8)) below and surface of Al_2O_3 -MgO is positively charged (pH_{zc} = 10.04) hence low adsorption on catalyst surface and low photodegradation efficiency.
- As the pH approaches the pH_{zc}, the repulsive force against MB cations is reduced. Above the pH_{zc}, Al₂O₃-MgO surface is negatively charged and attracts the MB cations hence higher photodegradation efficiency.
- In Figure 4b, at constant photocatalyst dosage, more electrons and holes are generated by Al_2O_3 -MgO as irradiation time increases. This leads to production of more reactive radical species, leading to an increment in the photocatalytic degradation efficiency

Effect of operational parameters

- Figure 4c shows effect of photocatalyst dosage. Increasing Al₂O₃-MgO dosage leads to the generation of more active sites and subsequently leads to higher MB photodegradation efficiency.
- In Figure 4d shows effect of initial MB dye concentration. As MB dye concentration increase, there is limitation of photon influx on the Al₂O₃-MgO surface, resulting in low generation of electrons and holes.

Optimization of operational parameters

- Significant terms to the model have p < 0.05
- Model R² value of 0.9880 indicating good fit

Table 2. ANOVA analysis

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	1029.44	14	73.53	81.99	< 0.0001	significant
А-рН	29.26	1	29.26	32.63	< 0.0001	
B-Time	11.41	1	11.41	12.73	0.0031	
C-Photocatalyst dosage	2.46	1	2.46	2.74	0.1198	
D-Initial MB dye concentration	348.8	1	348.8	388.92	< 0.0001	Ø
AB	15.5	1	15.5	17.29	0.001	
AC	0.5407	1	0.5407	0.6029	0.4504	
AD	412.34	1	412.34	459.77	< 0.0001	
BC	4.39	1	4.39	4.9	0.0441	
BD	8.2	1	8.2	9.14	0.0091	
CD	4.11	1	4.11	4.59	0.0503	
A²	12.29	1	12.29	13.7	0.0024	
B²	0.0067	1	0.0067	0.0074	0.9325	
C ²	0.0006	1	0.0006	0.0006	0.9804	
D ²	152.97	1	152.97	170.57	< 0.0001	
Residual	12.56	14	0.8968			
Lack of Fit	10.6	10	1.06	2.17	0.2372	not significant
Pure Error	1.96	4	0.489			
Cor Total	1042	28				

Optimization of operational parameters

Figure 5. Optimized conditions

Coded Equation for MB removal:

 $(MB removal + 22.5)^{0.81} = 12.63 + 1.56A - 0.9753B + 0.4529C - 5.39D + 1.97AB + 0.3677AC - 10.15AD - 1.01CD - 1.38A^2 - 0.0321B^2 - 0.0093C^2 + 4.86D^2$

Model validation

- Verification experiment : 59.20 % MB removal
- Model prediction : 57.82 % MB removal
- Error : 1.68 %.

Figure 6. Optimized conditions

Figure 7. Kinetic models

Suggested removal mechanism

- Generation of electron-hole combinations from light photons
- OH• and O₂⁻• responsible for MB degradation
- Mechanism summarized in Equations 1-5.

Figure 8. Suggested Removal mechanism

 $\begin{aligned} Al_2O_3-MgO + hv (vis region) & \rightarrow Al_2O_3-MgO (e_{cb}^- + h_{vb}^+) & (1) \\ h_{vb}^+ + H_2O(OH_-) & \rightarrow OH_{\bullet} + H^+ & (2) \\ e_{cb}^- + O_2 & \rightarrow O_2^- \bullet & (3) \\ O_2^- \bullet + MB & \rightarrow degradation \ products + CO_2 + H_2O & (4) \\ OH_{\bullet} + MB & \rightarrow degradation \ products + CO_2 + H_2O & (5) \end{aligned}$

Economic Evaluation

• Cost estimates based on textile wastewater treatment using the optimized conditions

Table 3. Economic feasibility

ltem	Value		
Volume of wastewater treated	80 m ³ per day		
Number of operating days in year	300 days		
Capital costs	US\$ 3,896,428.57		
Amortization Cost (25 years at 6% per annum interest rate)	US\$ 365,765.78		
Operational expenses	US\$ 30,250		
Wastewater Treatment Cost	US\$ 16.50/ m ³		
Profits (Wastewater re-use, color removal and Al ₂ O ₃ -MgO sales)	5.20/m ³ of wastewater treated		
Payback Period	3.17 years		

Conclusion

- Al₂O₃-MgO nanocomposite was prepared using co-precipitation technique
- UV-DRS analysis showed that the band gap energy was of Al₂O₃-MgO is 3.50 eV.
- RSM model had R² of 0.9880 for photocatalytic degradation of MB dye.
- MB photocatalytic degradation using Al₂O₃-MgO followed first order kinetics.
- Economic estimation revealed that the wastewater treatment cost was US\$ 16.50/ m³ with a payback period of 3.17 years.

ECP 2023 The 2nd International Electronic Conference on Processes: Process Engineering – Current State and Future Trends 17–31 MAY 2023 | ONLINE

THANK YOU