RSM Process Optimization of Biodiesel Production from Waste Cooking Palm Oil in the Presence of SO₃H-PSC Catalyst

Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand

<u>A. Buasri</u>*, P. Sirikoom, S. Pattane, O. Buachum, and V. Loryuenyong

Figure 1. XRD patterns of PSC and SO₃H-PSC samples.

Objective

The goal of this work is to make the transesterification/esterification of waste cooking palm oil (WCPO) more effective by adding a heterogeneous sulfonated palm seed cake (SO₃H-PSC) derived catalyst to the reaction system. The solid acid catalyst was synthesized by calcining of waste palm seed cake (PSC) and modified with zine chloride (ZnCl₂) and sulfonic acid (SO₃H).

The choice of raw material for **novel catalyst** synthesis provides a promising way of preparing "**green catalyst**" as it comes

Figure 2. FTIR spectra of PSC and SO₃H-PSC samples.

Figure 3. EDS analysis of SO₃H-PSC catalyst.

actor Coding: Actual

Yield of Biodiesel (%

Design Points

X2 = C

B = 15

actor Coding: Actua

X1 = A

%Yield of Biodiesel (%

Actual Factor

from renewable biomass and could be biodegraded easily.

Catalyst Preparation

The SO₃H-PSC catalyst was made from waste material so that it could be used as the good and cheap source of activated carbon (AC). The soaked PSC with $ZnCl_2$ was then transferred and calcined with tube furnace in N₂ atmosphere at 400 °C for 2 h. The sample will be dispersed in the 100 ml sulfonic acid (SO₃H) and subsequently sonicated for 2 h at 150 °C. Then, the novel catalyst was washed with excess hot distilled water to remove an excess of acid moieties.

Summary

Optimized reaction conditions by **response surface methodology (RSM)** in achieving **98.92% WCPO conversion** were identified as the **5.40 wt.% catalyst quantity**, **17.35:1 methanol/oil molar ratio**, and **8.57 min transesterification time**.

Biodiesel synthesis that employs biological residue and used waste vegetable oil will reduce waste disposal problem and cut the price of biodiesel, making biodiesel a viable fuel alternative compared to petroleum-derived biodiesel.

Figure 4. Optimal reaction conditions by contour plots of the catalyst quantity, methanol/oil mole ratio and reaction time, and cubical representation of effects of various parameters on %yield of biodiesel.

Table 1. Factors and levels of process for biodiesel production.

Factors	Levels		
	-1	0	+1
Catalyst quantity (A), wt.%	3	5	7
Methanol/WCPO mole ratio (B), mol/mol	12	15	18
Reaction time (C), min	5	7	9

biological re oil will redu cut the price viable fue petroleum-d

MATERIALS