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Abstract: Fault detection in multi-rate process systems is a challenging task. Common techniques 

used for fault detection include threshold-based detectors, statistical detectors, and machine learn-

ing-based detectors. One such statistical detector technique is Multiple Probabilistic Principal Com-

ponent Analysis (MPPCA). MPPCA uses probabilistic PCA to detect fault signals from multiple sen-

sors without down-sampling or up-sampling. This paper uses MPPCA to detect faults in a Two-

Phase Reactor-Condenser system with Recycle (TPRCR) with three measurement classes. These 

measurement data are used to build the MPPCA model using Expectation Maximization (EM). 

Based on this, T2 and SPE statistics are generated for fault detection in TPRCR systems, and the 

MPPCA approach’s effectiveness for fault detection is satisfactory. 
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1. Introduction 

Modern chemical industries focus on detecting and diagnosing faults as early as pos-

sible to increase production yield [1]. Effective fault detection techniques available in the 

literature require regular availability of measurements [2]. However, some variables in 

chemical processes are measured online, while other quality variables are measured of-

fline. Measurement of these offline quality variables requires human involvement, which 

makes the system an irregularly sampled multi-rate system [3]. Fault detection techniques 

for multi-rate systems include state space estimation techniques and data-based model-

ling methods. State space estimation techniques require accurate system models, which 

are difficult to model for complex chemical engineering systems. Compared to the above 

methods, another data-driven approach uses measurement data to model the system’s 

behaviour. These data-driven methods for multi-rate systems require down-sampling, 

up-sampling and re-sampling. While the down-sampling approaches will lose essential 

information during modelling, the up-sampling methods heavily rely on the correctness 

of the predictions [4]. In most chemical processes, the variation in sample rates is also too 

significant, resulting in unmanageable complexity in the re-sampling models. The 

MPPCA method does not require down-sampling, up-sampling and re-sampling of 

multi-rate data. It uses multi-rate data to build an inferential model that can handle mul-

tiple measurement classes. MPPCA method is an extension of Probabilistic Principal 

Component Analysis (PPCA) which uses the EM algorithm for parameter tuning. 

In this study effectiveness of the MPPCA method in detecting various faults for 

multi-rate nonlinear chemical process TPRCR is studied, and fault detection is done by 

using T2 and SPE statstics. 
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The remainder of this paper is organised as follows. Section 2 gives detail about the 

MPPCA method and model parameter estimation. Then Section 3 details about TPRCR 

model. Section 4 implements a fault detection technique on TPRCR. Finally, conclusions 

are made in the last section 

2. MPPCA Method 

The MPPCA model combines several rate data into a single model without down or 

up sampling. In our article, we have considered the MPPCA model with three different 

classes of measurements, and it is given by the following equations 

𝑥1 = ∅1𝑡 +∈1 (1) 

𝑥2 = ∅2𝑡 +∈2 (2) 

𝑥3 = ∅3𝑡 +∈3 (3) 

In Equations (1)–(3) x1 ∈ RK1×M1, x2 ∈ RK2×M2, x3 ∈ RK3×M3 are three different rate meas-

urements classes in which x3 is the slowest and x1 is the fastest measurement. ∅1∈ RM1×D, 

∅2∈ RM2×D and ∅3∈ RM3×D are loading matrices with three different sampling rates. t ∈ RD 

is a latent variable which extracts a restricted link between data with varied sampling rates 

and helps to develop one single model. The latent variable is assumed to have a Gaussian 

distribution with zero means and unit variance. ε1 ∈ RM1, ε2 ∈ RM2 and ε3∈ RM3 are used to 

model the corresponding isotropic Gaussian noises. 

The sequence of the measurements can be altered for easier notation and visualisa-

tion on the premise that all sample variables are independent. The whole observation (V) 

comprises three divisions of the observed data. The first sample contains all observations 

with dimensions M1 + M2 + M3 (V3), the following sample variables have dimensions M1 

+ M2 (V2), and the last one contains only M1 (V1) variables. As a result, the entire observa-

tion set is expressed as a union of all three. 

𝑉 = 𝑉3 ∪ 𝑉2 ∪ 𝑉1 (4) 

The EM technique is used to estimate model parameters for the MPPCA model. The 

method repeats the expectation step (E-step) and the maximisation step (M-step) until 

convergence. In the E-step, the current model parameters are utilised to estimate the pos-

terior distributions of the latent variables. The model parameters are then adjusted in the 

M-step by maximising log likelihood. The reference contains a detailed step of the EM 

algorithm for MPPCA training [5]. 

SPE statistics can be used to detect abnormal behaviour in measurements. There are 

three different classes of measurements, so three different SPE statistics are used to detect 

any anomaly in measurement. 

𝑆𝑃𝐸1 = 𝑥1 − ∅1𝑡 (5) 

𝑆𝑃𝐸2 = 𝑥2 − ∅2𝑡 (6) 

𝑆𝑃𝐸3 = 𝑥3 − ∅3𝑡 (7) 

since each SPE statistic is compiled based on the prediction errors of different classes of 

measurements, it clearly shows that a given fault is caused by which class of measure-

ments. The confidence bound of SPE statistics can be predicted by χ2 distributed approx-

imation: SPE~g.χℎ
2  in which g and h are the parameters of χ2 distribution, and they are 

given by [6]. 

𝑔ℎ = 𝑚𝑒𝑎𝑛(𝑆𝑃𝐸) (8) 

2𝑔2ℎ = 𝑣𝑎𝑟(𝑆𝑃𝐸) (9) 
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3. Two-Phase Reactor Condenser System with Recycle 

The process depicted in Figure 1 includes a two-phase reactor and condenser [7]. Re-

actants A and B are introduced into the reactor at molar flow rates FA and FB and temper-

atures TA and TB, respectively, in the vapour and liquid phases. Reactant A diffuses into 

the liquid phase at rate NA1, where an exothermic reaction occurs, which is given by Equa-

tion (10). 

 

Figure 1. Schematic Diagram of TPRCR system. 

A + B → 2C (10) 

Product C diffuses into the vapour phase at a rate Nc1, whereas reactant B is non-

volatile. The interphase mass transfer resistance is assumed to be minimal, and the Arrhe-

nius equation provides the reaction rate in the bulk liquid phase, which is given by Equa-

tion (11). 

𝑟𝐴 = 𝑘10 exp (
−𝐸𝑎

𝑅𝑇1
) 𝑀1

𝑙 𝜌𝑥𝐴1𝑥𝐵1  (11) 

where rA is the rate at which reactant A is consumed at temperature T1. The preexponential 

factor and activation energy are denoted by k10 and Ea, respectively. M1l is the liquid molar 

holdup in the reactor, and 𝜌 is the liquid density. xA1 and xB1 are A and B mole fractions 

in the liquid phase. For the sake of simplicity, heat capacity, density, and molar heat of 

vaporisation are considered to be constant and equal for all species. The liquid and vapour 

phases are suitable combinations. The liquid stream from the reactor is withdrawn at a 

constant flow rate F1l, while the vapour stream enters the condenser at a flow rate F1v. The 

vapour in the condenser is cooled to T2 to improve product purity by eliminating reactant 

A from the liquid. 

The reactant A-rich liquid phase in the condenser is returned to the reactor at a flow 

rate of F2l, while the product vapour phase departs the condenser at a flow rate of F2v and 

a composition of yA2. 

Equations (12) to (29) give a detailed Differential Algebraic Equation (DAE) model 

used to train the MPPCA model for data generation. 

�̇�1
𝑙 = 𝐹𝐵 − 𝐹1𝑙 + 𝐹2𝑙 + 𝑁𝐴1 − 𝑁𝐶1 (12) 

�̇�𝐴1 = (
1

𝑀1
𝑙) [−𝐹𝐵𝑥𝐴1 + 𝐹2𝑙(𝑥𝐴2 − 𝑥𝐴1) + 𝑁𝐴1(1 − 𝑥𝐴1) + 𝑁𝐶1𝑥𝐴1 − 𝑟𝐴] (13) 

�̇�𝐵1 = (
1

𝑀1𝑙

) [𝐹𝐵(1 − 𝑥𝐵1) − 𝐹2𝑙𝑥𝐵1 − 𝑁𝐴1𝑥𝐵1 + 𝑁𝐶1𝑥𝐵1 − 𝑟𝐴 (14) 

�̇�1
𝑣 = 𝐹𝐴 − 𝐹1𝑣 − 𝑁𝐴1 + 𝑁𝐶1 (15) 
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�̇�𝐴1 = (
1

𝑀1
𝑣) [𝐹𝐴(1 − 𝑦𝐴1) − 𝑁𝐴1(1 − 𝑦𝐴1) − 𝑁𝐶1𝑦𝐴1] (16) 

�̇�1 = (
1

𝑀1
𝑙 +𝑀1

𝑣) [𝐹𝐴(𝑇𝐴 − 𝑇1) + 𝐹𝐵(𝑇𝐵 − 𝑇1) + 𝐹2𝑙(𝑇2 − 𝑇1)  

+(𝑁𝐴1 − 𝑁𝐶1)
∆𝐻𝑣

𝐶𝑃
−

𝑄1

𝐶𝑃
+ 𝑟𝐴 (

−∆𝐻𝑟

𝐶𝑃
)]  

(17) 

�̇�2
𝑙 = 𝑁𝐴2 + 𝑁𝐶2 − 𝐹2𝑙 (18) 

�̇�𝐴2 = (
1

𝑀2
𝑙
) [𝑁𝐴2(1 − 𝑥𝐴2) − 𝑁𝐶2𝑥𝐴2] (19) 

�̇�2
𝑣 = 𝐹1𝑣 − 𝐹2𝑣 − 𝑁𝐴2 − 𝑁𝐶2 (20) 

�̇�𝐴2 = (
1

𝑀2
𝑣) [𝐹1𝑣(𝑦𝐴1 − 𝑦𝐴2) − 𝑁𝐴2(1 − 𝑦𝐴2) + 𝑁𝐶2𝑦𝐴2] (21) 

�̇�2 = (
1

𝑀2
𝑙 + 𝑀2

𝑣) [𝐹1𝑣(𝑇1 − 𝑇2) + (𝑁𝐴2 + 𝑁𝐶2)
∆𝐻𝑣

𝐶𝑝

−
𝑄2

𝐶𝑃

] (22) 

0 = 𝑁𝐴1 − 𝑘𝐴𝑎(𝑦𝐴1 − 𝑦𝐴1
∗ )

𝑀1
𝑙

𝜌
 (23) 

0 = 𝑁𝐶1 − 𝑘𝐶𝑎(𝑦𝑐1
∗ − (1 − 𝑦𝐴1)) 

𝑀1
𝑙

𝜌
 (24) 

0 = 𝑁𝐴2 − 𝑘𝐴a(𝑦𝐴2 − 𝑦𝐴2
∗ ) 

𝑀2
𝑙

𝜌
 (25) 

0 = 𝑁𝐶2 − 𝑘𝐶𝑎 ∗ (1 − 𝑦𝐴2 − 𝑦𝐶2
∗ ) 

𝑀2
𝑙

𝜌
 (26) 

0 = 𝑃1 (𝑉1𝑇 −
𝑀1

𝑙

𝜌
) − 𝑀1

𝑣𝑅𝑇1 (27) 

0 = 𝑃2 (𝑉2𝑇 −
𝑀2

𝑙

𝜌
) − 𝑀2

𝑣𝑅𝑇2 (28) 

0 = 𝑃1 − 𝑃2 −
1

0.09
(𝐹1𝑣)

7
4 (29) 

The system parameter values are given in Table 1. 

Table 1. TPRCR system parameter. 

Parameter Description Value Unit 

a Interfacial mass transfer area/unit liquid holdup 1000 m2/m3 

Cp Molar heat capacity 80 J/mol K 

Ea Activation energy 110 kJ/mol 

K Proportional gain of pressure controller −8 mol/s atm 

K10 Preexponential factor 2.88 × 1011 m3/mol s 

ka overall mass transfer coefficient for A 0.2 mol/m2 s 

kc overall mass transfer coefficient for C 0.8 mol/m2 s 

M1l Liquid molar holdup in reactor 14.52 kmol 

M2l Liquid molar holdup in condenser 15 kmol 
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M1v vapour molar holdup in reactor 3.75 kmol 

M2v vapour molar holdup in condenser 3.90 Kmol 

P1 Pressure in reactor 50 atm 

P2 Pressure in condenser 48.69 atm 

P* Set point for reactor pressure 50 atm 

TA Temperature of feed A 315 K 

TB Temperature of feed B 300 K 

T1 Temperature in reactor 330 K 

T2 Temperature in Condenser 304.16 K 

V1T Volume of reactor 3 m3 

V2T Volume of condenser 3 m3 

𝜌  Liquid molar density 15000 mol/m3 

∆𝐻𝑟   Heat of reaction −50 kJ/mol 

∆𝐻𝑣    Heat of vaporization 10 kJ/mol 

4. Fault Detection Using MPPCA for the TPRCR System 

Three types of measurements are used to train the MPPCA model. Fast-rate meas-

urements include temperature, pressure, and flow rates available every second (x1). Me-

dium-rate measurements include molar holdups available every fifteen seconds (x2), and 

slow-rate measurements include mole fractions available every one minute (x3). 

The MPPCA model is trained with 7200 samples of fast rate measurements, 480 sam-

ples of medium rate measurements, and 120 samples of slow rate observations. The fault 

identification capability of the MPPCA approach is assessed using the six categories of 

faults indicated in Table 2. 

Table 2. Fault description in the TRPCR system. 

Fault 

No. 
Fault Type Fault Introduced (s) 

1 Step jump in flow rate of A (FA) 2400 

2 Step jump in flow rate of B (FB) 2400 

3 Step jump in Temperature of A (TA) 2400 

4 Step jump in Temperature of B (TB) 2400 

5 Ramp jump in flow rate of A(0.0004*t) 2400 

6 Ramp jump in Temperature of A(0.003*t) 2400 

For a fair comparison, all detection models in this work have a level of significance 

of 0.99 for SPE and T2 statistics. Table 3 shows the false alarm rates for normal data and 

the missing detection rates for faults, where Fault 0 represents normal test data and mon-

itoring results are false alarm rates. The false alarm rate is the fraction of normal data that 

is interpreted as problem data. Similarly, the missing detection rate is the fraction of the 

defect data that is treated as normal data. Table 3 shows the monitoring results of all faults 

using T2 and different SPE statistics for the MPPCA model. 

Table 3. Fault Monitoring Results Using T2 and SPE Statistics. 

Fault No T2 SPE1 SPE2 SPE3 

0 0.021 0.001 0.004 0.0001 

1 0.035 0.023 0.09 0.008 

2 0.067 0.065 0.011 0.034 

3 0.001 0.001 0.001 0.001 

4 0.854 0.673 0.765 0.231 

5 0.313 0.452 0.023 0.045 
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6 0.201 0.121 0.111 0.201 

Three different SPE statistics are used to see what kind of fault wil have effect on 

which SPE statistics. Figure 2 shows SPE statistics for fault in flow rate of A (FA), which 

suggests that this fault affects all three SPE statistics. 

 
 

 

 

Figure 2. Monitoring Results of Fault 1. 

4. Conclusion 

In this paper, the TPRCR system is modelled as a multi-rate system due to the in-

volvement of quality variables, including three different classes of measurements. These 

measurements are used to develop the MPPCA model using EM algorithm. This devel-

oped MPPCA model is used to detect faults by developing T2 and three different SPE sta-

tistics for each measurement class. Six different types of faults are used to check the effec-

tiveness of the developed MPPCA model, and from monitoring results, we can clearly say 

that the MPPCA model can detect faults with a high detection rate. 
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