

Novel Immobilized Titanium dioxide onto Peanut shellbased activated Carbon for Advance Oxidation Process coupled with response surface models in organic

wastewater treatment.

By

Kingsley Safo

MSc. Research Student

Department of Chemical and Petrochemicals Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg Al-Arab city, Alexandria, Egypt.

kingley.safo@ejust.edu.eg

Authors

Kingsley Safo Mavis Berko Hillarus Dela Gohoho

8

U

Presentation Outline

- * Introduction and Background
- ***** Objective of the Study
- * Experimental Works
- * Results and Discussion
- * Contribution of the Research Work to the World

8

ECP

Introduction

The annual increase in the global population resulting in the high demand for clean and potable water for both domestic and industrial activities which conforms to Goal number 6 of the Sustainable development Goals (SDGs) by the United Nations.

Discharging of toxic and harmful substances in the water bodies and the environment endangers both human life and the ecosystem.

3

ECP 2023

- There are problems with waste disposal that arise before, during, and after industrial and agricultural processing.
- Several developing nations have poor waste management systems and generate enormous volumes of this kind of trash.
- Inadequate action to mitigate the resultant dangers might have disastrous consequences.
- Users of water and aquatic life may be placed at danger if these pollutants are washed into water sources.
- Yet, agricultural solid wastes are rich in carbon and might be used as a lowcost and easily accessible carbon adsorbent alternative.

H. D. Gohoho, H. Noby, J. I. Hayashi, and A. H. El-shazly, "Various acids functionalized polyaniline– peanut shell activated carbon composites for dye removal," *J. Mater. Cycles Waste Manag.*, vol. 24, no. 4, pp. 1508–1523, 2022, doi: 10.1007/s10163-022-01408-7.

*

Kingsley Safo (MSc)

5

T. Shindhal et al., "A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater," Bioengineered, vol. 12, no. 1, pp. 70-87, 2021, doi: 10.1080/21655979.2020.1863034

0

Kingsley Safo (MSc)

17 - 31 May 2023 (ECP Conference)

Photodegradation is a green chemical process that may be accomplished by using free solar light to break down contaminants into nonharmful compounds such as water and carbon dioxide

Photocatalysis = 'photo'+ 'catalysis'	Photocatalyst	Bandgap (eV)	Photocatalyst	Bandgap (eV)
The second second second	Diamond	5.4	SnO ₂	3.8
Conduction Band 02 Photo -reduction	Cubic ZnS	3.6	SrTiO ₃	3.4
	ZnO	3.3	TiO ₂ (anatase)	3.2
	α-Fe ₂ O ₃	3.1	TiO ₂ (rutile)	3.0
	WO ₃	2.8	CdS	2.4
	Fe ₂ O ₃	2.2	Cu ₂ O	2.1
OH	CdSe	1.7	CdTe	1.4
9 ht ht OH	WSe ₂	1.2	Si	1.1
Valance Band Photo-Oxidation Semiconductor Photocotolysis	K. Safo, H. Noby, M. Matatoshi, H. Naragino, and A. H. El-Shazly, "Solvothermal Prepared Slag Nanocomposite as a Catalyst for Organic Dye Photodegradation," Key Eng. Mater., vol. 931, pp. 125-130, Sep. 2022, doi: 10.4028/p-u25360.			

🐼 🐼 🕱 🖆

Q

88

Kingsley Safo (MSc)

17 -31 May 2023 (ECP Conference)

- The need for modification of TiO2
- 1. Due to its large Bandgap,
- 2. Is very expensive,
- 3. Take so much time for degradation under visible light,

4. Low reusability, Conventional TiO2 powder catalysts present the disadvantages of

agglomeration and of difficult separation of the final particle-fluid for the catalyst recycling

*

5. Low photostability

Kingsley Safo (MSc)

Objective of the Study

- To successfully convert agriculture waste (peanut shell) into activated carbon using the top-down approach (ACPNS)
- To immobilize TiO2 nanoparticles onto the activated carbon at a mass ratio of 1:3.
- To successfully Characterize the prepared materials.

- To study the photodegradation ability of the Prepared photocatalyst on MB dye under a simulated solar photoreactor using the Box-Behnken Design Model in Response surface methodology (RSM).
- To evaluate the stability and reusability of the immobilized ACPNS-TiO2
- To study the transformation product of the degradation process using LCMS

*

Experimental Work

1. The agriculture waste (peanut shell) in Egypt was used in this study

2. KOH, NaOH, and HCl, purchased from Fisher Scientific Company UK was used for the research

ECP

10

3. Methylene Blue (MB) dye with the characteristics below is used for these studies

Pollutant	Molecular Formula	λ _{max} (nm)	Molar Weight	Molecular Structure
Methylene Blue (MB) dye	C ₁₆ H ₁₈ CIN₃S	663	319.85	H ₃ C H ₃ C H ₃ C
Kingsley Safo (MSc)			17 -31 May 2023 (Ed	CP Conference)

E-JUST * Synthesis of the Activated Carbon Peanut Shell (ACPNS)

11

ECP

Synthesis of the ACPNS-TiO2

ECP 2023

ECP 2023

13

* Characterization of the prepared Materials

1. TEM & EDX

2. SEM

5. XRD

VI matrices 01 (25) 31 matrix 91 matrix 9 matrix

3. FTIR

6. UV-Vis MS

4. LCMS

Kingsley Safo (MSc)

17 - 31 May 2023 (ECP Conference)

* Response Surface Methodology for Optimization Study

1. RSM was used to optimize the photodegradation of MB wastewater using BBD with

three operating variables: A; ACPNS-TiO2 dosage, B; pH, C; MB concentration

Factors			Levels			
Name	unit	Label	Lowest value -1	Median value 0	Highest Value +1	
ACPNS-TiO ₂ dosage	mg/L	A	10	35	60	
рН		В	2	7	12	
MB Concentration	ppm	C	10	30	50	

*

Kingsley Safo (MSc)

* Response Surface Methodology for Optimization Study Cont'd

2. The optimization method was carried out using a quadratic Equation

below as depicted from the three independent variables

$$Y(\%) = b_0 + \sum_{I=1}^k b_I X_I + \sum_{I=1}^k b_{II} X_I^2 + \sum_{I=1}^{k-1} \sum_{J=2}^k b_{IJ} X_I X_J + \varepsilon \quad \dots \dots (1)$$

Where Y (%) denotes the degradation efficiency, the response variable in the

Equation, ε unidentified error constant, b is a set of regression coefficients normally

8

known as constant, and k represents the number of independent variables

Kingsley Safo (MSc)

16

** * Response Surface Methodology for Optimization Study Cont'd

3. To calculate the number of experimental runs, the equation below is used

 $TNE = K^2 + K + RCp$

T

.....(2)

Where K is the number of factors, RCp is the replicated number of the center point, and

8

TNE is the total number of experiments

Kingsley Safo (MSc)

17 -31 May 2023 (ECP Conference)

* Photocatalytic Test

The test was done based on the matrix parameters from the response surface methodology, at varying pH from 2-12 and MB concentration of 10-50ppm under the simulated Solar photo rector at 60 mins reaction time

ECP

ECP 2023

18

Fig 2. (a) ACPNS and (b) ACPNS-TiO2

0

Kingsley Safo (MSc)

20kV WD10mmSS30

17 - 31 May 2023 (ECP Conference)

EDX and TEM

Fig 3. (a) EDX and (b) TEM images of ACPNS-TiO2

Kingsley Safo (MSc)

17 - 31 May 2023 (ECP Conference)

ECP 2023

FTIR and XRD

ECP 2023

E-JUST3.4 Experimental Design and Result of the Response Surface Methodology (RSM) Study

*

Box-Behnken design matrix result for MB degradation efficiency(%) with experimental and predicted values

Y(%) = 79.71+11.60A+13.18B-10.56C-0.13AB-2.78AC-2.72BC-4.76A²-8.70B²-10.17C²

> **Operating Conditions:** 17 Run at 60 mins.

Run		ors (Actual Va		Degradation Effic			
	A(mg/L)	В	C (ppm)	Experimental	Predicted		
1	35	12	10	89.56	87.30		
2	35	2	50	37.56	39.82		
3	10	2	30	43.67	41.34		
4	35	7	30	79.87	79.71		
5	35	12	50	60.45	60.74		
6	35	2	10	55.78	55.49		
7	35	7	30	78.45	79.71		
8	10	7	50	45.33	45.40		
9	60	7	50	65.65	63.03		
10	35	7	30	80.22	79.71		
11	60	7	10	89.78	89.71		
12	35	7	30	78.56	79.71		
13	10	7	10	58.34	60.96		
14	10	12	30	68.32	67.96		
15	35	7	30	81.44	79.71		
16	60	2	30	64.43	64.79		
17	60	12	30	88.56	90.89		

E-JUST **3.5 Experimental Design and Result of the Response Surface Methodology (RSM) Study** 1.2 (ANOVA) Analysis of Variance

Source	Sum of	df	Mean Square	F-Value	P-
	Squares				Value
Model	4356.71	9	484.08	81.81	< 0.0001
A-ACPNS-TiO ₂ dosage	1075.55	1	1075.55	181.76	< 0.0001
B-pH	1389.96	1	1389.96	234.89	< 0.0001
C-MB Concentration	891.90	1	891.90	150.72	< 0.0001
AB	0.0676	1	0.0676	0.0114	0.9179
AC	30.91	1	30.91	5.22	0.0562
BC	29.65	1	29.65	5.01	0.0602
A ²	95.51	1	95.51	16.14	0.0051
B ²	318.71	1	318.71	53.86	0.0002
C ²	435.51	1	435.51	73.60	< 0.0001
Residual	41.42	7	5.92		
Lack of Fit	35.23	3	11.74	7.59	0.0
Pure Error	6.19	4	1.55		

ANOVA-result for degradation quadratic models

Vient IO Construction IV

*

23

E-JUST 3.6 Effect of ACPNS-TiO2 Dosage (A), B, pH and MB concentration (C) on MB degradation

Kingsley Safo (MSc)

17 - 31 May 2023 (ECP Conference)

E-JUST 3.7 Numerical Process Optimization

Optimum operating values were pH of 11.9, ACPNS-TiO₂ dosage of 56.75mg/L, and MB concentration of 20.77ppm, time of 60mins with photodegradation efficiency of 96.34%.

Kingsley Safo (MSc)

E-JUST 3.8 Reusability of the ACPNS-TiO2

E-JUST 3.9 Chromatographical analysis of degradation intermediate of MB using LCMS

*

U

Kingsley Safo (MSc)

17 - 31 May 2023 (ECP Conference)

Conclusion

- > In this work, raw agriculture waste was successfully synthesized, activated, and TiO2 immobilized for photodegradation of MB dye.
- Characterization of the produced materials was achieved for SEM, FTIR, TEM, EDX, and XRD.
- The result demonstrated that the produced catalyst is in a nanoform with stable immobilization structures comprised of different crystalline peaks.
- The degradation efficiency of ACPNS-TiO2 was studied, and we achieved almost a complete degradation of MB molecules after 60mins irradiation time.
- The photodegradation was optimized using response surface models where we attained 96.34% degradation efficiency at a pH of 11.9, ACPNS-TiO2 dosage of 56.75mg/L, MB concentration of 20.77ppm and a Time of 60mins.
- The MB degradation efficiency in five repeating cycles at the optimum parameters was 96.98%, 94.56%, 85.45%, 81.76%, and 74.64%, respectively.
 - The degradation transformation product was achieved using LCMS which shows a complete degradation without any intermediate

*

Kingsley Safo (MSc)

left

17 - 31 May 2023 (ECP Conference)

Contribution of the Research Work

8

0

This research will address two important environmental issues that affect numerous nations and the whole planet.

- The first is to reduce the massive volume of Agriculture waste that has been causing environmental problems for years.
- Second, it will aid in the resolution of water contamination issues.

The following aims in sustainable development goals will be met by these studies

Goal Number 3. Good health and well-being

Goal number 6. Clean water and sanitation

Goal Number 14. Life below water

Goal Number 15. Life on land

Reference

- [1] N. Onen, A. Elwardany, and M. Fujii, "Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels," *Chem. Eng. Res. Des.*, vol. 189, pp. 636–651, 2023, doi: 10.1016/j.cherd.2022.12.003.
- [2] T. Shindhal *et al.*, "A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater," *Bioengineered*, vol. 12, no. 1, pp. 70–87, 2021, doi: 10.1080/21655979.2020.1863034.
- [3] K. Safo, H. Noby, M. Matatoshi, and H. Naragino, "Statistical optimization modeling of organic dye photodegradation process using slag nanocomposite," *Res. Chem. Intermed.*, no. 0123456789, 2022, doi: 10.1007/s11164-022-04807-5.
- [4] M. Shafique, M. S. Mahr, M. Yaseen, and H. N. Bhatti, "CQD/TiO2 nanocomposite photocatalyst for efficient visible-light-driven purification of wastewater containing methyl orange dye," *Mater. Chem. Phys.*, vol. 278, no. August 2021, p. 125583, 2022, doi: 10.1016/j.matchemphys.2021.125583.
- [5] L. Ren *et al.*, "Applied Catalysis B : Environmental Defects-engineering of magnetic γ -Fe 2 O 3 ultrathin nanosheets / mesoporous black TiO 2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline deg," *Appl Catal. B Environ.*, vol. 240, no. July 2018, pp. 319–328, 2019, doi: 10.1016/j.apcatb.2018.08.033.
- [6] C. Zhu *et al.*, "Removal of gaseous carbon bisulfide using dielectric barrier discharge plasmas combined with TiO2 coated attapulgite catalyst," *Chem. Eng. J.*, vol. 225, pp. 567–573, 2013, doi: 10.1016/j.cej.2013.03.107.
- [7] W. Ao *et al.*, "TiO2/activated carbon synthesized by microwave-assisted heating for tetracycline photodegradation," *Environ. Res.*, vol. 214, no. P2, p. 113837, 2022, doi: 10.1016/j.envres.2022.113837.
- [8] G. Zeng *et al.*, "Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of aquatic naphthalene under sunlight irradiation," *Chem. Eng. J.*, vol. 412, no. December 2020, p. 128498, 2021, doi: 10.1016/j.cej.2021.128498.
- [9] W. Xu *et al.*, "Synergy mechanism for TiO2/activated carbon composite material: Photocatalytic degradation of methylene blue solution," *Can. J. Chem. Eng.*, vol. 100, no. 2, pp. 276–290, 2022, doi: 10.1002/cjce.24097.
- [10] K. Safo, H. Noby, M. Matatoshi, H. Naragino, and A. H. El-Shazly, "Solvothermal Prepared Slag Nanocomposite as a Catalyst for Organic Dye Photodegradation," *Key Eng. Mater.*, vol. 931, pp. 125–130, Sep. 2022, doi: 10.4028/p-u25360.
- [11] H. D. Gohoho, H. Noby, J. I. Hayashi, and A. H. El-shazly, "Various acids functionalized polyaniline-peanut shell activated carbon composites for dye removal," *J. Mater. Cycles Waste Manag.*, vol. 24, no. 4, pp. 1508–1523, 2022, doi: 10.1007/s10163-022-01408-7.
- [12] N. O. Rubangakene, A. Elwardany, M. Fujii, H. Sekiguchi, and H. Shokry, "Production of High Carbon Composite from Catalytic Pyrolysis of Pisum sativum Peels for Methylene Blue Dye Decolorization," vol. 935, pp. 171–177, 2022.

*

1

Kingsley Safo (MSc)

17 -31 May 2023 (ECP Conference)

(0)-

lacksquare