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Abstract: Intensive research in the field over the past decades highlighted the complexity of aroma
partition. Still, no general model for predicting aroma matrix interactions could be described. The
vision outlined here is to discover the blueprint for the prediction of aroma partitioning behavior
in complex foods by using machine learning techniques. Therefore, known physical relationships
governing aroma release are combined with machine learning to predict the Kmg value of aroma
compounds in foods of different compositions. The approach will be optimized on a data set of
a specific food product. Afterward, the model should be transferred using explainable artificial
intelligence (XAI) to a different food category to validate its applicability. Furthermore, we can
transfer our approach to other relevant questions in the food field like aroma quantification, extraction
processes, or food spoilage.
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1. Introduction

Two major challenges of modern societies are nutrition-related diseases and climate
change. Both topics are creating forces to change the composition of our food. On the
one hand, fat, salt, or sugar content must be reduced to lower the health risks and costs
associated with cardiovascular diseases, obesity, and diabetes. On the other hand, protein
sources are moving from animal to plant origin, driven by concerns about animal welfare
as well as the environmental effects of raw material production. However, nutritional
habits are only changed long-term if the alternative product is matching the original’s
sensory properties. This is why understanding the effect of compositional changes on
aroma perception is highly relevant to tackle the challenges of today’s world.
Extensive research has been done on the topic of aroma release to explain perception formed
in the brain. Aroma perception is a complex phenomenon, as it depends on physiological
parameters showing large inter-individual differences (e.g., saliva, breathing) [1], and it
shows cross-modalities to our other sensory inputs, i.e. texture and taste. However, from
the food perspective aroma release mainly depends on the interactions between the aroma
compound and the ingredients of the food (fat, carbohydrates, proteins, etc.) in a defined
food environment (pH, temperature). The strength of these interactions can be quantified
by the partition coefficient Kmg, defined as the quotient between the flavor concentration
in the food, and the concentration in the headspace above the food [1]. The Kmg value is
determined in equilibrium, thus it describes the thermodynamic end state. However, it also
determines the kinetics of aroma release, as the release rate is higher for aroma compounds
showing weak interactions with the matrix.
When the composition of a food is changed, e.g., to decrease the fat content, the aroma
profile is changed completely, because every aroma compound shows different interactions
with the fat phase. To compensate for this change, it is crucial to know the Kmg value of
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this compound in the new food composition. In combination with the aroma compound
concentration in the food, the concentration of aroma, which could be released during oral
processing, can be estimated. This is why it is crucial for the acceptance of reformulated
food products to predict the change in aroma partition caused by the change in composition.
In food technology, often, the basic physical principles are known, but the complexity in the
composition of the matrices is forcing research to work very empirically. Machine learning
could close this gap since it could combine background knowledge with large empirical
data sets to build prediction models. Understanding these models enables the transfer of
learnings into the development of healthy and sustainable foods.

In this vision paper, we describe our concept for a machine learning-based analysis
of the Kmg value and its composition. Based on such an approach, it would be feasible to
model the composition of the Kmg value in more detail and analyze how changing one
factor (e.g., amount of fat, sugar content, or protein type) would influence the sensory
perception of the food. We decide to target an explainable artificial intelligence (XAI)
approach, as such XAI approaches can explain the results of the machine learning analysis.

The remainder of this paper is structured as follows. Next, we describe relevant con-
cepts in Section 2: aroma-matrix interaction, prediction of aroma-matrix interactions, and
machine learning. After, Section 3 introduces our concept for XAI-based aroma prediction.
Finally, Section 4 summarizes the paper and presents relevant research challenges.

2. Background
2.1. Aroma-matrix Interaction

Aroma compounds can interact with food ingredients in different ways; interactions
like hydrogen bonds, electrostatic interactions, van-der-Waals, or hydrophobic interactions
being the most common ones, will be the focus of this project, as they determine the aroma
perception of food [2]. Figure 1 illustrates the different processes involved during aroma
release from a food:

1. The aroma partition coefficient describes the state in closed packaging, therefore the
first orthonasal impression of the food is determined by the aroma concentration in
the headspace cg.

2. During oral processing, the food is cooled down or warmed up to physiological
temperature, mixed with saliva, and mechanically processed [3].

Figure 1. Physical processes influencing aroma perception of food.

These processes lead to a fast release of the reversibly bound aroma compounds in the
food (cm), leading to retronasal aroma perception. This is why knowing real concentrations
in matrix and headspace, calculated from the Kmg value, is the basis for the development of
reformulated foods with similar aroma perception to the original.
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2.2. Prediction of Aroma-matrix Interactions

Aroma-matrix interactions depend on the chemical properties of the aroma compound
on the one hand and on the composition and processing of the food on the other. In
a nutshell, all prediction models are built up in a similar way. First, the dominating
mechanism of interaction with the studied food compound is determined, e.g., hydrogen
binding or hydrophobic interactions. Second, a coefficient needs to be found that quantifies
the ability of the aroma compound for these interactions. In the case of hydrophobic
interactions, this is often the log P value [4], the logarithmic partition ratio between octanol
(co) and water (cw) (see Eq. 1). Also the chain length of the molecule is a relevant parameter
for hydrophobicity [5].

logP = log(co/cw) (1)

Third, the method of partial least square regression (PLSR) is used to find the correlation
function to link the coefficients with the correct weights to the output, the Kmg value. This
method is called quantitative structure property or activity relationship (QSPR or QSAR)
[6, 7], as it is using the information of the chemical structure to predict a coefficient of
functionality, in this case, aroma-matrix interaction.

The influence of food ingredients on the Kmg value has also been extensively studied
[2]; however, most studies were conducted focusing on one ingredient, for example, beta-
lactoglobulin [4, 8]. However, this knowledge is only a basis for understanding aroma-
matrix interactions of complex food. Reformulating foods need a model able to describe
and compare aroma partition in real foods containing lipids, proteins, carbohydrates, salts,
and water. Fat, for example, can bind much more aroma compounds than proteins [9, 10].
Additionally, the inclusion of a gas phase also significantly changes aroma binding in foods
[11]. This is why the number of parameters influencing aroma matrix interactions in real
foods is larger than the simplified models described in scientific literature.

In addition to the compositional complexity, food processing also influences aroma-
matrix interactions. Heating steps have an influence on protein conformation, thus influ-
encing possible binding sites of aroma compounds [12, 13]. Microbiological fermentation
steps are also relevant, as they often decrease the pH value. If electrostatic interactions
bind aroma compounds, they will be affected by changes in pH [14]. Additionally, protein
conformation depends on pH if denaturation takes place. This process can also be caused
by changes in salt content [15].

2.3. Machine Learning

Machine learning methods are used to find and describe relationships between dif-
ferent attributes in a large data set to predict, classify, or forecast one or more output
parameters. In the food domain, big data methods are already being applied in several
fields, like agricultural production, product innovation, food quality, and food safety. For
example, IoT and big data analysis in agriculture can decrease the usage of herbicides
by crop and weed imaging [16]. Food safety can be increased by traceability through
blockchain technology to modernize the supply chain [17], and food waste can be reduced
by using intelligent packaging indicating the degree of freshness [18].

Machine learning can hold the key to determining the most influential factors and
their dependencies for a complex process like aroma release, which is influenced by various
parameters from the aroma and food side. The physical models predicting aroma release
presented so far focus on specific protein-aroma interactions, but real food systems are
far more complex. Predictions using more parameters were tried with multiple linear
modeling [19]. However, not all aroma compounds could be described successfully due to
their non-linear behavior. It was shown that combining PLS and artificial neural networks
(ANN) improved the prediction accuracy of consumer liking of green tea beverages [20].
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3. Approach

The approach’s first major step is identifying and evaluating suited input parameters.
The selection of the input parameters is based on the known physical laws of flavor release.
Then the data sets should be firstly verified by reproduction of selected experiments. This
is important because the accuracy of the machine learning model relies heavily on raw
data quality. As an example, even though the Kmg is determined in most cases with the
phase ratio variation (PRV) method, differences in the results are expected. This is due to
different analytical settings, e.g. sensitivity of the used detector or sampling method. Since
the Kmg value is determined using the slope of a linear fit and the lines intersect, it is very
susceptible to deviations.

After finding and evaluating the input parameters, an algorithm has to be selected
and optimized until the Kmg values for all aroma compounds are successfully predicted.
The "No Free Lunch Theorem" states that no universal best machine learning method exists.
Therefore, an machine learning algorithm must fit the data, which is why different methods
of machine learning for prediction will be compared, including decision trees (random
forest, eXtreme gradient boosting), support vector machines, k-nearest neighbor algorithms,
and ANNs. Since different machine learning models may be needed for different patterns
in the data, respectively, for describing the ratios for different flavors, the integration
mechanisms of adaptive software are also useful, e.g., to implement a recommendation
service to support the selection of the best algorithm as well as its parameter configuration
(hyper-parameter tuning). The validation of the machine learning method is performed
continuously while the method is selected and optimized. Accordingly, the machine
learning algorithm and optimization selection are not sequential but iterative.

Usually, the optimization goal for machine learning models is the accuracy of predic-
tion. In our setting, we also aim for transparency, as we need to understand the models
for not only getting a prediction of the Kmg value but can also explain changes in the value
when adjusting the composition of the food. One of the disadvantages of machine learning,
especially using Deep learning procedures with ANNs, is the missing transparency of
the prediction and the mistrust derived from it; such machine learning models are often
referred to as “black boxes”. But with the help of explainable artificial intelligence (XAI),
there is an opportunity to learn from the models [21, 22]. For example, physicochemical
relationships could be inferred from data-driven models, e.g., the influence of the functional
group exceeds that of the chain length. Figure 2 illustrates how XAI can be included in a
machine learning prediction to increase the understanding of the results from the model.
Therefore, the normal process for machine learning is complemented by an XAI component.
This XAI component either extracts the explanation directly from the learned model if the
model is transparent (e.g., this is valid for decision trees), or the component learns how
the model comes to a prediction, e.g., by integrating the existing scientific models for the
determination of the Kmg value.

In addition, performance as computational time is an important parameter for the
machine learning process. Validation of the machine learning method will be performed
continuously as the method is selected, optimized, and transferred using state-of-the-art
machine learning evaluation procedures and metrics. We will focus on the process of
learning the model rather than only learning one specific model for a specific food. Hence,
the process can be re-used with other products if the relevant Kmg values for learning are
available and the receipts of that food.
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Figure 2. Process of machine learning-based prediction with an additional XAI component to explain
the results to the users.

4. Discussion and Outlook

There are several remaining challenges that we need to solve for a functioning ap-
proach. First, our approach requires training data, i.e., measurements of the Kmg values for
a specific food composition. For milk, there are databases available; hence, we have started
to focus on this category of products. Second, we need to identify the best-fitting machine
learning algorithms. According to the “No free lunch” theory from optimization sciences,
which is also valid for machine learning approaches, no single optimization/machine
learning algorithm is superior in all settings. In machine learning, the choice of the best
machine learning algorithm is influenced by the data patterns. Third, if the best algo-
rithm lacks interpretability, i.e., the model is not explainable, we must implement the XAI
component. There are approaches available that fully focus on the data used for learning
and are process-independent, i.e., independent of the specific machine learning algorithm.
However, we plan to implement an XAI approach that integrates the existing scientific
models for predicting the Kmg value, as those models enable an additional validation of the
machine learning process.

The novel approach envisioned in this paper can be transferred to new food systems,
e.g., plant-based food products, which serve as alternatives to milk from an animal source
or meat. The results of the XAI component will decrease the time and complexity of
developing the machine learning model to predict aroma partition in plant-based products.
This is how our research can contribute to developing more ecologically sustainable food
products. Our approach could not only be transferred to the prediction of aroma partition
in other food products but also much wider in the food field. The knowledge of aroma
partition is also highly relevant in aroma analysis, as quantification is often performed in
the headspace of an equilibrated product, e. g. via solid phase microextraction (SPME).
The model established in this project could be used to calculate the aroma concentration in
the food via headspace analysis, enabling aroma quantification in food without extraction
of the matrix. Taking the approach a step further to food process engineering, substance
transfer during extraction processes could be predicted; either the goal could be an increase
of valuable substances, e.g., essential oils, or the decrease of unwanted substances, e.g.,
furocoumarins in citrus oils. As a third idea relevant to food safety, the approach could be
used to predict microbial spoilage in complex food systems if composition, processing, and
environmental data from storage were included in the model.

Author Contributions: Conceptualization, C.K., Y.Z., and C.B.; methodology, C.K., Y.Z., and C.B..;
investigation, C.K., Y.Z., and C.B.; resources, M.A.; writing—original draft preparation, M.A. and
C.B.; writing—review and editing, M.A., C.K., Y.Z., and C.B.; visualization, C.B.; supervision, C.K.
and C.B. All authors have read and agreed to the published version of the manuscript.
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Abbreviations
The following abbreviations are used in this manuscript:
ANN Artificial neural network
PLS Partial least square
PLSR Partial least square regression
PRV Phase ratio variation
QSAR Quantitive activity relationship
QSPR Quantitative structure property
SPME Solid phase microextraction
XAI Explainable artificial intelligence
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