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Abstract: A simple and efficient protocol for one-pot three-component synthesis of structurally di- 9 

verse sulfamidophosphonates from the condensation of sulfanilamide, aldehydes and tri- 10 

ethylphosphite in ethanol using ZnO nanoparticles as catalyst under microwave irradiation has 11 

been developed. The structures of all compounds have been identified by appropriate spectroscopic 12 

methods such as FTIR, 1H, 13C, 31P NMR and ESI-MS.  13 
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1. Introduction 18 

Significant factors that are intimately linked with the advancement of ecologically 19 

sustainable methods include the concept of atom economy, which pertains to the maxi- 20 

mization of the utilization of all reactants employed in a process, along with a focus on 21 

enhancing overall efficiency. Additionally, there is a need to eliminate toxic intermedi- 22 

ates/products from such processes while simultaneously minimizing the production of 23 

waste to the greatest extent possible [1-3]. Multicomponent reactions (MCRs) have arisen 24 

as a compelling technique in this regard, enabling the facile synthesis of elaborate mole- 25 

cules through a one-pot approach, devoid of the need for intermediate isolation and pu- 26 

rification. This affords a reduction in expenses, as well as time and energy consumption, 27 

making it a fascinating tool for organic synthesis [4-6]. 28 

.Furthermore, the use of environmentally sustainable energy sources for the promo- 29 

tion of chemical reactions has a prominent role [7]. In this regard, the use of microwave 30 

irradiation in synthesis generally leads to decreased reaction time, enhanced yield and 31 

selectivity, as well as the facilitation of organic transformations that would otherwise de- 32 

mand severe temperature and pressure conditions [8-10]. 33 
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However the use of heterogeneous catalysts in organic synthesis has attained a nota- 1 

ble degree of significance. This is due to the fact that not only do they facilitate environ- 2 

mentally sustainable syntheses, but they also yield a high percentage of products with 3 

exceptional selectivity. Various accounts have substantiated the outstanding performance 4 

of nanoparticles as heterogeneous catalysts in multicomponent reactions with regards to 5 

their selectivity, reactivity, and augmented product yields [11]. 6 

Among various metal nanostructures, nanoparticles (ZnO-NPs) have received signif- 7 

icant attention due to their remarkable properties and potential applications in diverse 8 

fields [12]. ZnO-NPs, in particular, exhibit high availability and can produce high product 9 

yields in short reaction times with only mild reaction conditions, as compared to conven- 10 

tional catalysts. Moreover, they can be readily recycled [13]. ZnO-NPs have been utilized 11 

as an active catalyst in several reactions, such as synthesis of coumarins through 12 

Knoevenagel condensation [14] and Synthesis of Functionalized Benzenes [15]. 13 

In the current study, we described the efficient use of ZnO-NPs for the synthesis of 14 

sulfamidophosphonate derivatives with optimal duration and yields. 15 

2. Results and discussion 16 

To facilitate the advancement of our investigations in the field of the synthesis of new 17 

compounds containing sulfonamide and phosphonate moieties, we are keen to explore 18 

the synthesis of novel derivatives of α-sulfamidophosphonate trough a one-pot kabach- 19 

nik-fields reaction. Our approach involves the use of a green, clean eco-friendly method 20 

using microwave irradiation in the presence of zinc oxide nanoparticles [16–18] as a reus- 21 

able and heterogeneous catalyst. 22 

A series of new α-sulfamidophosphonate derivatives has been successfully synthe- 23 

sized with remarkable efficiency via a one-pot, three component Kabachnik-Field’s reac- 24 

tion. The reaction involved the use of of sulfanilamide (1) with various aromatic aldehydes 25 

(2a-g) and trialkyl phosphite (3) under microwave irradiation catalyzed by catalytic quan- 26 

tities of (ZnO-NPs) in ethanol. The reaction was completed with excellent yields (Scheme 27 

1). 28 

 29 
Scheme 1: Synthesis of α-sulfamidophosphonate derivatives. 30 

The first stage of this work involved the refinement of the reaction parameters, en- 31 

compassing the identification of suitable solvents, catalysts, and temperatures. The results 32 

of optimization are shown in Table 1. In this work, the effects of some solvents were also 33 

investigated for the production of 4(a-g). 34 

Microwave irradiation was employed to investigate the reaction efficiency of various 35 

solvents at a temperature of 100°C. It was observed that the reaction yields were signifi- 36 

cantly low in solvents such as CH2Cl2, MeOH, acetone, and in the absence of solvent. In 37 

contrast, employment of EtOH as the solvent resulted in a substantially higher yield of 38 

60%, as demonstrated in Table 1. 39 

On the other hand, under the same conditions, the reaction was carried out in the 40 

presence of 10 mol% of ZnO-NPs as green catalyst and the product was obtained in 93% 41 

yield after 15 min. 42 

The results show that in the EtOH, the yields are higher than the other solvents. 43 
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According to the results of the optimization reported in tables 1, we observed that 1 

catalytic use of ZnO-NP (10% molars), EtOH as solvent under microwave irradiations 2 

were estimated as the optimal reaction conditions. 3 

Table 1. Optimization for the synthesis of α-sulfamidophosphonates with /without ZnO NPs. 4 

 
 

Microwave Microwave with ZnO NPs 

Entry Solvent Time/min Temp/°C Yields % Time/min Temp/°C Yields % Catalyst 

mol % 

1 No 

solvent 

30 100 - 30 100 20 10 

2 CH2Cl2 20 100 40 20 100 55 10 

3 MeOH 20 100 50 20 100 60 10 

4 Acetone 20 100 40 20 100 53 10 

5 EtOH 15 100 60 15 100 93 10 

The reaction between sulfanilamide 1, benzaldehyde 2a, and triethylphosphite 3 was 5 

selected as a model to evaluate the feasibility of α-sulfamidophosphonates and to opti- 6 

mize the reaction conditions. 7 

The structures of the synthesized compounds are confirmed by elemental analysis as 8 

well as by IR and 1H, 13C, and 31P NMR spectral data.  9 

The 31P NMR spectrum of compound 4a demonstrated a single peak at a chemical 10 

shift δ = 22.19 ppm. 11 

In the 1H NMR spectrum, a deshielded doublet of doublets at δ= [5.0-5.30] ppm was 12 

consistently observed, which corresponds to NH*CH(R)PO(OEt)2. The two CH2 groups of 13 

the mustard moiety detected at δ = [4.14-3.87] and [3.94-3.63]. 14 

The FT-IR spectrum displayed a distinctive absorption band around [3351.92- 15 

3286.65] cm-1, which corresponds to the NH group, while the sulfamide group exhibited 16 

signals at [1153.18-1147.64] cm-1 and [1327.16-1310.95] cm-1. Additionally, the phosphonate 17 

group appeared around [1229.42-1205.92] cm-1.  18 

The 13C NMR spectrum presented characteristic doublets related to the presence of 19 

phosphorus (JC-P couplings), while the two ethoxy groups of phosphonate moiety were 20 

identified at [16.37-15.94] ppm (JC-P ~ 5.1–5.8 Hz) and [62.95-61.17] ppm (JC-P ~ 6.6–7 Hz). 21 

The asymmetric carbon NHCH(R) PO(OEt)2 was observed at [50.51-54.26] ppm, exhibit- 22 

ing a doublet with a large coupling constant of JC-P ~150.6–155 Hz. 23 

3. General procedure for the synthesis of sulfamidophosphonate derivatives  24 

A mixture of sulfanilamide (1) (1 mmol) different substituted aromatic aldehydes (2a- 25 

g) (1 mmol) and triethyl phosphite (3) (1 mmol) in the presence of ZnO nanoparticles cat- 26 

alyst (10 mol %) and EtOH as solvent were laid in a flat-bottom flask and irradiated with 27 

MWI. Movement of the reaction was observed by TLC experiment dichloromethane- 28 

methanol (99/1) for every 2mins. After completion of the reaction, the reaction mixture 29 

was filtered and the catalyst was washed with ethyl acetate. The solvent was evaporated 30 

from the mixture and the residue was purified by Et2O to afford the pure α-sulfami- 31 

dophosphonates in excellent yields. All other compounds were prepared by the same pro- 32 

cedure 33 

4. Conclusion 34 

In summary, the facile and greener synthetic routes were developed for the synthesis 35 

of novel α-sulfamidophosphonates using ZnO-NPs as a catalyst. A synthetic approach 36 
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based on a one-pot, three-component Kabachnik-Fields reaction was devised, which used 1 

commercially available starting materials. 2 

Data Availability Statement:  3 

diethyl (phenyl((4-sulfamoylphenyl)amino)methyl)phosphonate (4a) 4 

White powder, 93% yield, m.p. 198-200°C, Rf꞊ 0.22 (CH2Cl2/MeOH: 96/4). IR (KBr): 5 

3342.05, 1149.70-1319.94, 1227.04 cm-1. 1H NMR (400 MHz, DMSO) δ 1.05 (t, J= 7 Hz, 3H, 6 

CH3), 1.18(t, J=7 Hz, 3H, CH3), 3.76-3.72 (m, 1H, CH2), 3.92-3.86 (m, 1H, CH2), 4.08-4.00 (m, 7 

1H, CH2), 5.15 (dd, 1H, *CH), 6.89(d, J=8.8Hz, 4H, HAr), 7.09-7.05 (m, 1H, HAr), 7.26-7.23 8 

(m, 1H, NH), 7.33(t, J= 12Hz, 2H, HAr), 7.44(d, J꞊8.8 Hz, 2H, NH2), 7.54-7.52 (m, 2H, HAr) 9 

ppm. 31P NMR (100 MHz, DMSO) δ 22.19 ppm.  13C NMR (101 MHz, DMSO) δ 150.09, 10 

136.26, 131.51, 128.24, 128.01, 127.49, 126.91, 112.36, 62.49, 62.30, 53.44, 16.25, 16.00, ppm. 11 

Anal. Calcd for C17H23N2O5PS C, 51.25; H, 5.82; N, 7.03. Found: C, 51.30; H, 5.70; N, 7.10. 12 
diethyl ((4-fluorophenyl)((4-sulfamoylphenyl)amino)methyl)phosphonate (4b) 13 

Yellow powder, 91% yield, m.p 168-170°C, Rf꞊ 0.22 (CH2Cl2/MeOH: 96/4). IR (KBr): 14 

3332.54, 1149.16-1318.92, 1225.03 cm-1. 1H NMR (400 MHz, DMSO) δ 1.06 (t, J = 7.1 Hz, 3H, 15 

CH3), 1.17 (t, J = 7.0 Hz, 3H, CH3), 3.82 – 3.73 (m, 1H, CH2), 3.95 – 3.87 (m, 1H, CH2), 4.04 16 

(dqd, J = 11.2, 7.0, 2.8 Hz, 2H, CH2), 5.20 (dd, 1H, *CH) , 6.93–6.85 (m, 4H, HAr), 7.20 – 7.04 17 

(m, 3H, HAr) , 7.45 (d, J = 7.1 Hz, 2H, NH2), 7.56 (ddd, J = 7.6, 5.4, 2.2 Hz, 2H, HAr) ppm. 13C 18 

NMR (101 MHz, DMSO) δ 162.95, 160.53, 150.09, 132.58, 131.74, 130.38-130.25, 127.11, 19 

115.17-114.93, 62.81, 62.57, 52.75, 16.35, 16.15 ppm. Anal. Calcd for C17H22FN2O5PS: C, 20 

49.04; H, 5.33; N, 6.73. Found: C, 49.15; H, 5.40; N, 6.80. 21 
diethyl ((4-bromophenyl)((4-sulfamoylphenyl)amino)methyl)phosphonate (4c) 22 

White powder, 88% yield, m.p. 172-174°C, Rf꞊ 0.24 (CH2Cl2/MeOH: 96/4). IR (KBr): 23 

3351.92, 1150.03-1322.47, 1225.53 cm-1. 1H NMR (400 MHz, DMSO) δ 1.08 (t, J = 7.1 Hz, 3H, 24 

CH3), 1.18 (t, J = 7.0 Hz, 3H, CH3), 3.87 – 3.74 (m, 1H, CH2), 3.98 – 3.87 (m, 1H, CH2), 4.12 – 25 

3.99 (m, 2H, CH2), 5.20 (dd, 1H, *CH), 6.95 – 6.81 (m, 4H, HAr), 7.07 (dd, J = 9.7, 6.6 Hz, 1H, 26 

NH), 7.40 (d, J = 8.4 Hz, 2H, HAr), 7.46 (d, J = 8.9 Hz, 2H, NH2), 7.54 (dd, J = 8.6, 2.2 Hz, 2H, 27 

HAr) ppm. 13C NMR (101 MHz, DMSO) δ 150.02, 135.54, 132.34, 131.80, 128.19, 127.09, 28 

62.85, 62.59, 52.87, 16.35, 16.15 ppm. Anal. Calcd for C17H22BrN2O5PS C, 42.78; H, 4.65; N, 29 

5.87. Found : C, 42.85; H, 4.57; N, 5.77. 30 
diethyl ((4-methoxyphenyl)((4-sulfamoylphenyl)amino)methyl)phosphonate (4d) 31 

White powder, 89 % yield, m.p. 158-160°C, Rf꞊ 0.22 (CH2Cl2/MeOH: 96/4). IR (KBr): 32 

3317.19, 1153.18-1310.95, 1223.14 cm-1. 1H NMR (400 MHz, DMSO) δ  1.07 (t, J = 7.0 Hz, 33 

3H, CH3), 1.18 (t, J = 7.0 Hz, 3H, CH3), 3.72 (s, 4H, CH2+OCH3), 3.94 – 3.82 (m, 1H, CH2), 34 

4.14–3.94 (m, 2H, CH2), 5.15 (dd, 1H, *CH), 6.95 – 6.77 (m, 6H, HAr), 7.02 (dd, J = 9.8, 6.4 35 

Hz, 1H, NH), 7.44 (dd, J = 8.9, 2.0 Hz, 4H, NH2+HAr)  ppm.13C NMR (101 MHz, DMSO) δ 36 

158.68, 150.15, 131.42, 129.43, 127.949, 126.902, 113.51, 112.40, 62.42, 62.27, 54.26, 16.30, 37 

16.09 ppm. Anal.Calcd for C18H25N2O6PS C, 50.46; H, 5.88; N, 6.54. Found: C, 50.51; H, 5.80; 38 

N, 6.62. 39 
diethyl ((4-hydroxyphenyl)((4-sulfamoylphenyl)amino)methyl)phosphonate (4e) 40 

White powder, 91% yield, m.p. 90-92 °C, Rf꞊ 0.11 (CH2Cl2/MeOH: 96/4). IR (KBr): 41 

3343.79, 1147.64-1323.66, 1219.42 cm-1. 1H NMR (400 MHz, DMSO) δ  1.06 (t, J = 7.0 Hz, 42 

3H, CH3), 1.18 (t, J = 7.0 Hz, 3H, CH3), 3.76 – 3.67 (m, 1H, CH2), 3.88 (dt, J = 10.3, 7.2 Hz, 43 

1H, CH2), 4.06 – 4.00 (m, 2H, CH2), 5.0 (dd, 1H, *CH), 6.71 (d, J = 8.6 Hz, 2H), 6.92–6.84 (m, 44 

4H, HAr), 6.97 (dd, J = 9.8, 6.2 Hz, 1H, NH), 7.32 (dd, J = 8.7, 2.2 Hz, 2H, HAr), 7.45 (d, J = 8.9 45 

Hz, 2H, NH2), 9.38 (s, 1H, OH) ppm.13C NMR (101 MHz, DMSO) δ 156.54, 150.21, 131.32, 46 

129.42, 126.91, 126.10, 114.89, 112.36, 62.30, 61.17, 52.86, 16.31, 16.09  ppm. Anal. Calcd for 47 

C17H23N2O6PS: C, 49.27; H, 5.59; N, 6.76. Found: C, 49.35; H, 5.67; N, 6.84. 48 
diethyl (((4-sulfamoylphenyl)amino)(m-tolyl)methyl)phosphonate (4f) 49 
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White powder, 90% yield, m.p. 194-196 °C, Rf꞊ 0.21 (CH2Cl2/MeOH: 96/4). IR (KBr): 1 

3336.3, 1149.46-1315.53, 1208.35 cm-1. 1H NMR (400 MHz, DMSO) δ 1.06 (t, J = 7.0 Hz, 3H, 2 

CH3), 1.18 (t, J = 7.0 Hz, 3H, CH3), 2.28 (s, 3H, CH3), 3.78 – 3.64 (m, 1H, CH2), 3.94 – 3.82 3 

(m, 1H, CH2), 4.12 – 3.98 (m, 2H, CH2), 5.10 (dd, 1H, *CH), 6.94 – 6.83 (m, 4H, HAr), 7.13 – 4 

7.01 (m, 2H, HAr), 7.21 (t, J = 7.6 Hz, 1H, NH), 7.38 – 7.30 (m, 2H, HAr), 7.48–7.42 (m, 2H, 5 

NH2) ppm.13C NMR (101 MHz, DMSO) δ 150.17, 137.09, 136.21, 131.47, 128.81, 128.24, 6 

127.94, 127.41, 126.96, 125.43, 62.51, 62.36, 53.38, 16.30, 16.03 ppm. Anal. Calcd for 7 

C18H25N2O5PS: C, 52.42; H, 6.11; N, 6.79. Found: C, 52.54; H, 6.21; N, 6.87. 8 
diethyl ((4-chlorophenyl)((4-sulfamoylphenyl)amino)methyl)phosphonate (4g) 9 

White powder, 89% yield, m.p.178-180°C, Rf꞊ 0.20 (CH2Cl2/MeOH: 96/4). IR (KBr): 10 

3286.65, 1148.98-1327.16, 1205.50 cm-1. 1H NMR (400 MHz, DMSO) δ 1.02 (t, J = 7.0 Hz, 3H, 11 

CH3), 1.22 (t, J = 7.0 Hz, 3H, CH3), 3.78 – 3.63 (m, 1H, CH2), 3.88 (dt, J = 10.5, 7.5 Hz, 1H, 12 

CH2), 4.11 (p, J = 7.1 Hz, 2H, CH2), 5.30 (dd, 1H, *CH), 6.76 (d, J = 8.9 Hz, 2H, HAr), 6.92 (s, 13 

2H, HAr), 7.38 – 7.22 (m, 3H, HAr), 7.53–7.42 (m, 3H, NH2+HAr), 7.66 (d, J = 7.5 Hz, 1H, NH) 14 

ppm.13C NMR (101 MHz, DMSO) δ 149.61, 133.93, 133.38, 132.17, 129.60, 129.16, 127.36, 15 

112.11, 62.94, 62.67, 50.51, 16.30, 15.94 ppm Anal. Calcd for C17H22ClN2O5PS: C, 47.17; H, 16 

5.12; N, 6.47. Found: C, 47.25; H, 5.08; N, 6.55. 17 
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