Impact of microbial inoculants on maize growth

Alexandra Guedes¹, Ana S. S. Sousa¹, Paula Castro¹, <u>Sofia I.A. Pereira^{1*}</u>

¹Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal

*sapereira@ucp.pt

INTRODUCTION

- ⇒ World population is estimated to reach 9.7 billion by 2050, which will greatly increase the demand for food;
- The agricultural sector is facing several challenges on soil fertility and health, related to the negative impact of non-sustainable farming practices and climate change. Essential food crops, such as maize, are already manifesting a decrease in growth and yield;
- ⇒ There is an urgent need to **develop new sustainable biotechnological tools** to increase plant growth and resilience;

Negative / Positive result

⇒ Biofertilizers including beneficial plant growth promoting (PGP) bacteria can be a solution to restore soil fertility, health, and to increase plant development.

The work aims to evaluate the effect of different bacterial consortia with beneficial PGP traits on maize growth

EXPERIMENTAL DESIGN/RESULTS

Bacterial isolates PGP traits

• 9 bacterial strains previously isolated from the rhizosphere and tissues of plants growing under different environmental conditions were tested for:

Positive result

 Table 1: List of tested isolates and their ability to solubilize P, fix N2 and produce NH3 and IAA. P

 solubilization indexes and IAA (μ g mL⁻¹) values are expressed as means ± SD (n=3).

Bacterial strains	P solubilization	N ₂ -Fixation	NH ₃	IAA (µg/mL)
Bacillus aryabhattai LS1-2		÷	++	75.65 ± 5.27
Pseudomonas azotoformans IR1-5	2.37 ± 0.45	++	++++	80.23 ± 14.87
Arthrobacter nicotinovorans EAPPA	2.13 ± 0.21	+++	++	206.06 ± 15.35
Pseudomonas fluorescens S3X	2.33 ± 0.15	+++	++	208.09 ± 4.64
Rhodococcus sp. EC35	-		+	47.31 ± 9.23
Pseudomonas azotifigens BL01	1.83 ± 0.23	-	+	180.85 ± 33.67
Mesorhizobium sp. 3A12	-		+	175.85 ± 10.58
Bacillus megaterium 3AP1		÷.	++	75.23 ± 19.25
Rhizobium taibaishanense ZR3-3	-	2	+	84.50 ± 18.99

(-) negative, (+) positive/weak production, (++) moderate production, (+++) strong production

- Based on PGP traits and biocompatibility tests, 4 consortia containing 2 strains were selected for the greenhouse trial:
- 2 Mix 1: EAPPA + S3X (50:50) 3 Mix 2: EAPPA + IR1-5 (50:50)

(3) Mix 3: S3X + LS1-2 (50:50) (5) Mix 4: S3X + IR1-5 (50:50)

Greenhouse pot experiment

- Pots containing 600 g of agricultural soil were used (x4/treatment)
- Three maize seeds (*Zea mays* var. Dekalb) were added to each pot After germination, 10 mL (1 x 10⁸ CFU/ml) of each bacterial consortium were sprayed into soil surface

Fig. 1- Maize root and shoot biomass biometric parameters. Bars represents means (n=4) \pm SD. One-way ANOVA was performed for each test condition. Means with different letters are significantly different from each other (P < 0.05) according to the Duncan test.

- A significant increase in shoot elongation was observed in pots inoculated with Mix 4
- Bacterial inoculation increased fresh shoot biomass when comparing to the control test condition

CONCLUSIONS

- · Bacterial consortia promoted shoot elongation, suggesting their ability to increase plant growth and potential to be used as biofertilizers
- · Significant differences in shoot fresh weight could indicate a positive water retention effect with the application of bacteria
- More research needs to be conducted to evaluate inoculants potential use in sustainable agriculture

ACKNOWLEDGEMENTS

This work was supported by the PRIMA Project ReCROP - Bioinocula and CROPping systems: an integrated biotechnological approach for improving crop yield, biodiversity, and REsilience of Mediterranean agroecosystems (PRIMA/0002/2020), exclusively financed by national funds through FCT, I.P.. The authors would like to thank the CBQF scientific collaboration under the FCT project UIDB/50016/2020.

