Foods 2023

The 4th International Electronic Conference on Foods Focus on Sustainable Food Systems: Current Trends and Advances

Phenolic Compounds and Bioactive Properties of *Clematis cirrhosa* L. (Ranunculaceae): The Pharmacological Potential of an Underexploited Herb

Houari Benamar ^{1,2*}, Malika Bennaceur ^{1,2}

1 Faculty of Natural and Life Sciences, University of Oran1, PO Box 1524, El M'Naouer, 31000 Oran, Algeria 2 LRAA, Faculty of Biological Sciences, USTHB, PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria

Introduction

- Plant extracts are excellent antioxidant agents and acetylcholinesterase (AChE) inhibitors
 [1]. Inhibitors of AChE are used to treat cholinergic diseases [2]. Antioxidants have health benefits, and are used in food industries [1].
- Clematis cirrhosa L. is an Algerian medicinal herb used to treat burns, joint aches, rheumatism pain, and sexual dysfunction and as a diuretic agent [3,4,5,6].
- Antioxidant, and AChE inhibitory effects of extracts obtained from *C. cirrhosa* were studied.
 Phenolic levels, and compositions were also determined in order to prove its possible use as source of bioactive compounds.

Fig. 1: Picture of C. cirrhosa L.

Objectives

• The objective of the present work was to estimate phenolics, and to evaluate antioxidant and anti-acetylcholinesterase effects of extracts of *C. cirrhosa*.

Methods

Results

Table 1: Results of chromatographic analysis of phenolics in extracts.				
Extract	Phenolic acids	Flavonoids	Anthraquinones	
EtOAc	Caffeic acid Chlorogenic acid	Kaempferol-3,7- <i>O</i> - dirhamnoside	Chrysophanol	
MeOH	-	Kaempferol-3,7- <i>O</i> - dirhamnoside	Chrysophanol Emodin	

Table 2: Extract yield, and phenolic contents of <i>C. cirrhosa</i> extracts.						
Extract	Yield	ТРС	TFC	TFLC	тстс	тнтс
	(%)	(mg GAE/g DE)	(mg CE/g DE)	(mg QE/g DE)	(mg CE/g DE)	(mg TAE/g DE)
EtOAc	1.47	96.13±2.52	44.90±2.08	16.05±0.07	3.15±0.14	585.21±5.72
MeOH	11.66	99.98±2.53	24.62±0.53	22.12±0.39	6.22±0.55	85.54±2.14

SEM of n=3.

Table 3: Antioxidant activities of C. cirrhosa extracts. Results are expressed as EC50 values (µgmL-1).

/standard	DPPH	ABTS	DMPD	SO	ICA	FRAP	CUPRAC
	122.34±4.93	300.41±4.98	1632.85±5.93	2661.61±4.47	3009.52±7.07	318.84±8.81	477.90±1.17
	95.06±1.29	179.48±6.94	2208.89±23.43	3058.16±8.53	721.13±8.26	436.05±8.23	263.96±1.14
ic acid*	3.95±0.00	63.70±2.52	45.96±0.19	885.00±1.01	n.t.	30.22±0.05	215.68±0.06
tin*	4.09±0.15	7.22±0.05	214.86±0.35	101.86±0.10	n.t.	21.00±0.20	28.73±0.06
	24.39±0.38	16.85±0.40	373.03±3.02	101.80±0.09	n.t.	54.38±0.48	56.16±0.25
	6.72±0.05	26.33±0.73	52.26±0.20	244.41±0.26	n.t.	110.10±1.75	117.94±0.11
	n.t.	n.t.	n.t.	n.t.	3.92±0.00	n.t.	n.t.
and the second of the second							

ards; n.t.: not tested. SEM of n=3.

Table 4: Anti-acetylcholinesterase (AChE) activity of <i>C. cirrhosa</i> extracts. Results are expressed as IC50 values (µgmL-1).

Extract/standard	AChE
EtOAc	533.73±3.75
MeOH	710.96±6.21
Galanthamine*	0.29±0.00
*Standard. SEM of n=3.	

Fig. 2: Results of β -carotene/linoleic acid bleaching assay. SEM of n=3.

Conclusion

• This work provided a fundamental reference for the research of polyphenols in *C. cirrhosa* with bioactivities. *C. cirrhosa* could be further explored as a source of bioactive compounds.

References

- [1] Bendjedou, H.; et al. Plants 2023, 12(5), 996.
- [2] Mukherjee, P.K.; et al. Phytomedicine 2007, 14(4), 289-300.
- [3] Chohra, D.; et al. S. Afr. J. Bot. 2020, 132, 164-170.
- [4] Ferchichi, L.; et al. Ann. Romanian Soc. Cell Biol. 2021, 25(7), 1314-1324.
- [5] Marc, E.; et al. J. Ethnopharmacol. 2008, 120(3), 315-334.
- [6] Saad, B.; Said, O. John Wiley & Sons: Hoboken, New Jersey, USA, 2011; pp. 228.

Acknowledgements

The authors acknowledge the MHESR for financial support (PRFU No. D01N01UN480120230001).