Spent coffee grounds – a coffee byproduct abundant of bioactive compounds with antioxidant properties

Rita Brzezińska¹, Agata Górska¹, Magdalena Wirkowska-Wojdyła¹, Ewa Ostrowska-Ligęza¹ ¹Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences – SGGW, Poland

Introduction

Food processing industries have been facing ever-growing difficulties related with the plant waste accumulation and environmental degradation recently. To overcome these problems, circular economy

conceptualization (CEC) was brought to life [1]. SCG are solid coffee waste material abundant in various chemical compounds, which are only partially isolated from grounded coffee in the process of coffee brewing. These compounds include: polyphenolic compounds, caffeine, melanoidins and fatty acids [2].

Due to the aforementioned, the main goal of the present research was to evaluate quality of spent coffee grounds blend collected after coffee beverage preparation in local commercial establishments serving coffee.

Tab 1. The quality evaluation of SCG extract by using following spectrophotometric and chromatographic determinations: TPC (total polyphenols content), antioxidant acivity by using ABTS and FRAP assays, BI (browning index), caffeine and chlorogenic acids (CQA) contents. Data are shown as mean value \pm standard deviation. Abs₄₂₀ – spectrophotometric measurements of absorbance at 420 nm wave length * – analysis performed using a high-performance liquid chromatograph

Results

1. The analysed SCG blend could be recognized as a coffee by-product

Sample	Analysis	Result
SCG extract	TPC [mg GAE/g SCG d.m.]	33.79 ± 0.07
	ABTS [mg Trolox/ g SCG d.m.]	72.83 ± 0.10
	FRAP [µmol Fe(II)/g SCG d.m.]	71.39 ± 0.10
	BI (Abs ₄₂₀)	0.20 ± 0.01
	Caffeine content* [mg/g SCG d.m.]	9.06 ± 0.07
	CQA content* [mg/g SCG d.m.]	7.52 ± 0.05

Tab 2. Fatty acids profile present in SCG oil (SFA – saturated fatty acids, MUFA – monounsaturated fatty acids, PUFA – polyunsaturated fatty acids). Data are shown as mean value \pm standard deviation.

Fatty acids group	Fatty acid	Fatty acid share [%]	Fatty acid group share [%]
	C16:0	$37.18\pm\!0.50$	46.92 ± 0.43
SFA	C18:0	8.21 ± 0.16	
	C20:0	1.53 ± 0.01	
MUFA	C18:1n9-c	11.08 ± 0.22	11.08 ± 0.22
PUFA	C18:2n6c	39.69 ± 0.52	41.64 ± 0.34
гога	C18:3n-3c	1.95 ± 0.02	

Fig 1. PDSC curve of oxidation induction time (OIT) of oil extraxcted from SCG blend.

- abundant of bioactive antioxidant compounds, especially caffeine and chlorogenic acids.
- The SCG oil mainly contained palmitic acid and linoleic acid. Also the high share of unsaturated fatty acids was indicated.
- 3. The oxidation induction time of SCG oil reached 43.8 min.
- 4. Further scientific investigations will be recommended to examine the possibility of the apllication of SCG in various forms as a new ingredient of functional food commodities.

Foods 2023

The 4th International Electronic Conference on Foods 01–15 October | Online

References

 Winans, K.; Kendall, A.; Deng, H. The history and current applications of the circular economy concept. Renew. Sust. Energ. Rev. 2017, 68, 825–833.
Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.A.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Tech. 2015, 45, 24–36