The 4th International Electronic Conference on Foods , 15–30 Oct 2023

Evaluation of DNA extraction methods for PCR analysis of maize and sunflower oils

Tamara Kutateladze¹, Kakha Bitskinashvili¹, Boris Vishnepolsky¹, Kakha Karchkhadze², Tata Ninidze^{1, 2}, Nelly Datukishvili^{1, 2}

¹ Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia ² School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia

Challenges of the Modern Food Industry

Oil plants differ in the following indicators:

- Chemical and molecular composition
 - Toxic and allergenic properties
 - Nutritional value and safety
 - industrial value

The modern food industry has a big challenge dealing with the adulteration of different types of plant oils

- International legislation requires food authentication and traceability at all stages of production
- It is necessary to provide accurate information about the presence of food ingredients and allergens through labeling

A food monitoring system needs effective methods of detecting food ingredients!

Study Aim:

To develop efficient PCR technology for plant DNA traceability in oils

Objects: Sunflower and Maize

Seeds Flours cold-pressed oils refined oils

Sunflower samples

Sunflower and maize seeds and flours were purchased from a supermarket

Maize samples

Cold-pressed sunflower oil was provided by the company "AgroPro Ltd"

Refined and cold-pressed corn oils were purchased from a supermarket Preparation of DNA samples of appropriate quality and sufficient quantity from oils remains a major drawback for successful PCR detection!

Our study examines several approaches to DNA enrichment and extraction

Genomic DNA extraction

Agarose gel electrophoresis of genomic DNAs

Oil DNA enrichment – Centrifugation of 30 ml cold-pressed sunflower oil at 18,000 g, 4 °C

DNA samples:

- 1. cold-pressed sunflower oil extraction by modified CTAB method
- 2. cold-pressed sunflower oil extraction by standard CTAB method
- 3 4. sunflower seeds extraction by standard CTAB method
- 5. Maize flour extraction by standard CTAB method

The genomic DNA band visible on the agarose gel was obtained from cold-pressed sunflower oil!

PCRs specific to 18S ribosomal RNA gene

Samples

- 1-2. cold-pressed sunflower oil, Olive Oil kit
- 3-4. cold-pressed sunflower oil, NucleoSpin Food kit
- 5. Sunflower seeds, plant mini kit
- 6. Water negative control

Results

- DNA enrichment by oil centrifugation at 18,000 g, 4 °C gave best results
- Olive oil kit and Nucleospin food kit gave amplifiable DNA from cold pressed sunflower oil

Amplicon 18S-140

3

18S - 140

4

6

M

PCRs specific to 18S ribosomal RNA gene Comparison standard and modified CTAB methods

Amplicon 18S-302

Samples:

1. Sunflower seeds, standard CTAB method 2.cold-pressed sunflower oil, standard CTAB method

3. cold-pressed sunflower oil, modified CTAB method

4. Water -negative control

Amplicons 18S-140 (1-5) and 18S – 167(6-10) Samples:

1, 6. Sunflower seeds, standard CTAB method

2, 7.cold-pressed sunflower oil, standard CTAB method

3-4, 8-9. cold-pressed sunflower oil, modified CTAB method

5.10. Water negative control

Amplicons 18S-140 (1-4) and 18S – 167 (5-8) Samples:

1, 5. maize seeds, standard CTAB method

- 2, 6. refined maize oil, modified CTAB method
- 3, 7. cold-pressed sunflower oil, modified CTAB method
- 4, 8. Water negative control

Results

- The modified CTAB method gave amplifiable DNA from oils, but standard CTAB method did not give genomic DNA from oils
- Standard CTAB method gave amplifiable DNA from Sunflower and maize seeds
- The expected amplicons were amplified in both seeds and oil samples by PCRs targeting 18S RNA gene
- 18S302 amplicon-specific PCR is a more efficient method than 18S167 and PCR 18S140 amplicon-specific PCRs

Sunflower detection in oils by PCR Comparison of standard and modified CTAB methods

1	2	3	4	М	5	6	7	8		
	heli - 83		5005p	1						
			250bp							
h		83	200bp 150bp							P
-	-		100bp 50bp							
entro d										

PCR amplicons heli-77 (1-4); heli-104 (6-9; heli-160 (11-14)

PCR amplicons heli -83 (1-4); heli-188 (6-9)

6 7 8

PCR amplicons heli -162 (1-4); heli-188 (6-9;

PCR amplicons

PCR amplicons Heli-77 (1-4), heli -83 (5-8);

heli-160 (9-12)

1 2 3 4 M 5 6 7 8 9 10 11 12

Samples

- 1, 6, 11. Sunflower seeds, standard CTAB method
- 2, 7, 12. 2.cold-pressed sunflower oil, standard CTAB method
- 3, 8, 13. cold-pressed sunflower oil, modified CTAB method
- 4. Water negative control

Heli-160 (1-4), heli -162 (5-8); heli-188 (9-12); heli-104 (13-16)

Samples

5, 9, 13. cold-pressed sunflower oil, Olive Oil kit
6, 10, 14. cold-pressed sunflower oil, NucleoSpin Food kit
7, 11, 15. Sunflower seeds, plant mini kit
8, 12, 16. Water negative control

Results

- A modified CTAB method was found to be the best method for extracting amplifiable DNA from sunflower oil
- The standard CTAB method was found to be the best method for extracting amplifiable DNA from sunflower seeds
- DNA obtained by the NucleoSpin Food Mini Kit is useful for PCR detection of sunflower in oil
- DNA obtained with the Olive Oil DNA Isolation Kit failed to detect sunflower by PCR in the oil

Conclusions

- The oil type (cold-pressed, refined), DNA extraction and amplification methods are important for successful PCR analysis
- Centrifugation of the oils at 18,000 g, at 4 °C was the best method for DNA enrichment from the oils
- The modified CTAB method was found to be the best DNA extraction method for PCR analysis of sunflower and maize oils
- In addition, a PCR system specific for the 18S-302 amplicon of the 18S ribosomal RNA gene was identified as the best method for DNA traceability in oils

Acknowledgments

- This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [Grant AR-22-636]
- The co-funding organization of the project is "Biodiesel Georgia" LLC.

Thank You for Your Attention!

Ilia State University

Nelly Datukishvili

Kakha Karchkhadze

Tata Ninidze

Tamar Koberidze

I.Beritashvili Center of Experimental Biomedicine

Kakha Bitskinashvili

Tamar Kutateladze

Boris Vishnepolsky

