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Abstract: The potential for bioremediation of olive mill wastewaters with different origin - olive 

washing (OWW) and olive oil extraction (OMW) - by 4 species of microalgae (Chlorella vulgaris, 

Auxenochlorella protothecoides, Scenedesmus obliquus and Arthrospira maxima was evaluated. All micro-

algae could grow in the wastewaters, but C. vulgaris and C. protothecoides showed the best perfor-

mance. The highest biomass productivities of 165.8 mg L-1 day-1 for OMW and 107.9 mg L-1 day-1 for 

OWW were achieved with C. vulgaris and A. protothecoides, respectively. Moreover, with both spe-

cies, COD and nitrates content of the two wastewaters were reduced by 60 and more than 50%, 

respectively. However, a significant removal of polyphenols was verified only in OWW (~ 45%). 

Overall, these findings demonstrate the potential of C. vulgaris and A. protothecoides species be used 

in a biological olive mill wastewater treatment process. 
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1. Introduction 

Olive oil industry is an important sector within the agro-food industries in the Med-

iterranean countries but constitutes a major environmental problem regarding the dis-

posal of its wastewaters. Olive mill wastewater is a turbid, dark colored, foul-smelling 

and acidic effluent, which compositions depends on several factors, but especially on the 

characteristics of the olive oil extraction equipment. The extraction process has evolved 

over the years from discontinuous (press method) to continuous methods, using centrifu-

gal separators. At first, a process with decanter of three outlets (olive oil, pomace and 

wastewater) was used, but to reduce the environmental impact generated, the number of 

outlets was reduced to two, one for olive oil and the other for pomace and vegetable water 

(and process water). In the two-phase system, wastewaters are produced in less volumes 

and have less organic load, however, large amounts of semisolid wastes are also produced 

[1,2]. 

Nowadays, chemical, biological and integrated technologies are used for the treat-

ment of these wastewaters. As it presents a low biodegradability due to its antibacterial 

activity, given by the phenolic content, the use of different physicochemical operations is 

necessary to reduce toxicity. Besides, these processes are also efficient in reducing sus-

pended solids and consequently organic matter content [1]. Bioremediation through mi-

croalgae is an interesting option, since it is an environmentally friendly process, as 

wastewaters can be used as cheap nutrient sources for microalgal biomass production that 

could be a source of stored chemical bond energy, especially into lipids, carbohydrates 

and proteins [3,4]. In fact, microalgal cultivation has been successfully used in the 
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treatment of two-phase olive mill wastewaters, combined with other physicochemical op-

erations (e.g. [4–6]).  

 The main objective of this work was to evaluate the potential for bioremediation of 

two OMW with different origin - olives washing (OWW) and olive oil extraction (OMW) 

- by microalgae. It was used three species of green microalgae, Chlorella vulgaris, 

Auxenochlorella protothecoides and Scenedesmus obliquus and the cyanobacterium Arthrospira 

maxima.  

2. Material and methods 

2.1. Microalgae 

The microalgae cultures were obtained from the National Laboratory of Energy and 

Geology (LNEG) in Lumiar, Lisbon, Portugal. Chlorella vulgaris (INETI 58) and Auxenochlo-

rella protothecoides (UTEX 25) were maintained in an inorganic medium containing per li-

tre: 1.25 g KNO3, 1.25 g KH2PO4, 1 g MgSO4.7H2O, 0.11 g CaCl2.2H2O, 0.5 g NaHCO3, 10 

mL Fe-EDTA solution and 10 mL trace elements solution (Chu medium). Scenedesmus 

obliquus (ACOI 204/07) was maintained in Bristol medium containing per litre: 250 mg 

NaNO3, 75 mg K2HPO4, 33 mg CaCl2.2H2O, 75 mg MgSO4.7H2O, 175 mg KH2PO4, 25 mg 

NaCl, 60 mg Fe-EDTA, and 10 mL Chu medium. Arthrospira (Spirulina) maxima (Setchell 

& Gardner, LB 2342) was maintained in a standard inorganic medium for Spirulina con-

taining per liter: 1.25 g NaNO3, 8.4 g NaHCO3, 500 mg NaCl, 500 mg K2SO4, 250 mg 

K2HPO4, 40 mg EDTA, 26.5 mg CaCl2.2H2O, 5 mg FeSO4.7H2O, 100 mg MgSO4.7H2O and 

1 mL trace elements solution [7]. 

2.2. Wastewaters 

The olive mill wastewaters used in this work were obtained from an olive-oil extrac-

tion plant in the Douro region, northern Portugal, which uses a continuous centrifugation 

process with two outlets (olive oil and pomace). It was collected a part of the liquid frac-

tion of the pomace reservoir (hereafter referred to OMW) and washing wastewater from 

another reservoir (OWW)). 

2.3 Experimental setup 

Prior to microalgae culture, wastewaters were pre-treated by a 24h sedimentation 

and a tyndallisation process which consisted of heating at 80°C during 2 h, followed by 

cooling at room temperature, repeating these process three days in succession. Tyndal-

lised wastewater was stored at 4°C until further use. Then, the culture media were pre-

pared by diluting the OMWs with inorganic media (appropriate for each species): 5% and 

50%, v/v, for OMW and OWW, respectively. Finally, it was added 5 % (v/v) of each mi-

croalgae inoculum. All experiments were conducted in duplicate in 250 mL Erlenmeyer 

flasks incubated in an orbital shaker (New Brunswick Scientific) at 23 ± 2 ◦C, under an 

agitation speed of 100 rpm and kept under continuous illumination (light intensity of 20–

25 µmol photons m−2 s−1 supplied by a white 18 W LED lamp). Wastewaters without inoc-

ulum were used as a control.  

2.4. Analytical determinations 

The following parameters were determined for raw wastewaters: pH, electric con-

ductivity (EC), turbidity, total suspended solids (TSS), total organic carbon (TOC), chem-

ical oxygen demand (COD), biochemical oxygen demand (BOD), polyphenols, orthophos-

phate (P-PO4), total nitrogen (TN) and nitrates (NO3).  

pH, EC, turbidity values and TSS were directly measured by using a pH meter 

(Crison micro pH 2000), a conductivity meter (VWR C030), turbidimeter (2100N IS, 

HACH) and a UV/VIS-Spectrophotometer (HACH) respectively. TOC and TN were ana-

lysed in a Shimadzu TOC–L with a TN unit and an ASI-L autosampler. COD and BOD 
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were measured according to Standard Methods 5220D and 5210D (using a System Oxitop 

Control), respectively [8]. Polyphenols were determined by spectrophotometry using the 

Folin-Ciocalteu reagent (Merck) and expressed as equivalent mg gallic acid L-1. P-PO4 was 

measured according to Standard Method 4500-P E [8] and NO3 according to [9]. 

Microalgae growth was monitored daily, calculating the biomass dry weight (DW) 

by filtering the samples with a glass microfiber of 1.6 μm pore size and drying overnight 

at 105 °C. Biomass productivity (PX, mg L−1 day−1) was calculated by: 

Px = (DW – DW0) / (t – t0),      (1) 

where ‘DW, mg/L’ is the biomass concentration at any time of the experiment  and 

‘DW0 g/L’ is the biomass concentration at the beginning of the experiment (t = 0 days). 

After filtration of the culture samples, the filtrate was collected and characterized in terms 

of pH, COD, polyphenols, P-PO4 and NO3, to evaluate the efficiency of the treatment.  

3. Results and discussion 

3.1. Wastewaters composition 

The main physicochemical characteristics of sedimented wastewaters used in this 

work are summarized in Table 1. It is evident the high turbidity (given by high TSS) and 

organic matter content, particularly in OMW, which presents excessive TOC, COD and 

BOD5 values. From an environmental point of view this is a problem, and it is required an 

efficient solution for the treatment of these wastewaters. Polyphenols content are also rel-

evant. These compounds are transferred to OMW during olives crushing and olive oil 

washing phenolic compounds which are toxic to microorganisms and plants [1]. There-

fore, to reduce the organic matter, turbidity and toxicity, the effluent was diluted with 

inorganic media at 5% and 50% (v/v), for OMW and OWW, prior to the microalgal culti-

vation. 

Table 1. Characterization of the wastewaters used. 

Parameter OMW OWW 

pH 5.1 ± 0.1 4.1 ± 0.1 

EC (µS cm-1) 270 ± 50  357 ± 12 

Turbidity (NTU) 693 138 

TSS (mg L-1) 699 118 

TOC (mg C L-1) 67 130 2 382 

TN (mg N L-1) 809.9 33.3 

COD (mg O2 L-1) 206 880 ± 1332 7789 ± 356 

BOD5 (mg O2 L-1) 6050 ± 50 80 ± 10 

Polyphenols (mg gallic acid L-1) 3875 ± 20 326 ± 69 

P-PO4 (mg P L-1) 487 ± 6 18 ± 3 

NO3 (mg L-1) 548 ± 21 49 ± 4 

 

It is reported that an optimal C/N/P mass ratio of 46.1/7.7/1 can be deduced for mi-

croalgae [10]. It seems that the wastewaters in this work were N-deficient, particularly in 

OWW as C/N ratios are high (17.8 and 71.5 in OMW and OWW, respectively) whereas 

N/P ratios are close to optimum (7.7) in OMW and very low (1.9) in OWW. 

 

3.2 Microalgal growth 

From the growth curves represented in Fig. 1 it is clear the complexity of the effluents. 

During the first 3 days, the four species of microalgae showed a similar behavior, with 

low productivity (lag phase), followed by an abrupt increase of the biomass, in the case of 

C. vulgaris and A. protothecoides and finally a deceleration growth phase. The species S. 

obliquus showed the least adaptability to both wastewaters. 
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Higher productivities (Table 2) were achieved in OMW, as this wastewater has a 

higher amount of organic matter, which leads to greater availability of nutrients for the 

growth of microalgae. However, in the case of OMW, it was observed cellular death after 

4 days (Figure 1. OMW), that means that, despite the greater availability of nutrients, the 

toxicity of the effluent is overpowering. 

 Overall, in both wastewaters, C. vulgaris and A. protothecoides, showed the highest 

productivities (Table 2). Using A. protothecoides a maximum value of 165.8 mg L-1 day-1 was 

achieved for OMW and for OWW was 107.9 mg L-1 day-1, using C. vulgaris. 

. 

Figure 1. Evolution of the concentration of biomass, given by dry weight (DW), over time in OWW 

and OMW. 

Table 2. Maximal productivities for each species in olives washing wastewater diluted at 50% 

(OWW) and olive oil extraction diluted at 5% (OMW). 

Wastewater Microalgae PX, max (mg L-1 day-1) 

OWW 

 

C. vulgaris 107.9 ± 15.3 

A. protothecoides 73.7 ± 3.6 

S. obliquus 20.4 ± 7.6 

A. maxima 48.1 ± 16.8 

OMW 

C. vulgaris 115.1 ± 18.9 

A. protothecoides 165.8 ± 34.1 

S. obliquus 38.3 ± 4.2 

A. maxima 143.3 ± 22.4 

 

3.3 Bioremediation potential  

To evaluate the bioremediation potential of the microalgae, it was calculated the re-

moval of the pollutant in terms of COD, polyphenols, P-PO4 and NO3. Microalgae can 

consume organic carbon from wastewaters, using a heterotrophic path if light is absent or 

a mixotrophic one, combining autotrophic (photosynthesis) and heterotrophic metabo-

lisms [11]. Phenolic compounds are considered toxic to many microalgae but can also be 

considered as carbon and energy sources. It is suggested that microalgae can remove phe-

nolic compounds by mineralization to carbon dioxide or biochemical modification to 

other compounds [12]. Nitrogen and phosphorous are the two most important macronu-

trients in microalgae metabolism. Microalgae can assimilate NO3, which is one of the most 

common inorganic nitrogen forms in aquatic environments, by first reducing it to ammo-

nium, and incorporate phosphorous in its orthophosphate forms (H2PO4− and HPO4 2−) 

through phosphorylation [13]. 

One can see in Fig. 2 that in control (non-inoculated wastewaters) it was verified 

some removal of the pollutants, which can be explained by the proliferation of other 
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heterotrophic microorganisms such as bacteria, fungi and protozoa that competes with 

microalgae. The most easily reduced pollutant by microalgae was nitrate. It was observed 

a removal of more than 50% in all cultures. Generally, comparing wastewaters, all micro-

algae present similar performance when removing COD. Although the great availability 

of organic matter, the best removals were 62% for OMW and 68% for OWW in cultures of 

C. protothecoides and C. vulgaris, respectively. The effluents were somewhat recalcitrant to 

the microalgae treatment. The most significant removals of P-PO4 were verified with Ar-

throspira (67.0% for OMW and 36.0% for washing wastewater). Since phenolic compounds 

are toxic for microalgae, it was not expected a significant removal, particularly in OMW. 

In fact, the removal of polyphenols did not exceed 45 % for OWW, using both Chlorella 

species, and in OMW only Arthrospira maxima could consume this pollutant (~40%).  

 

Figure 2. Removals of COD, polyphenols, P-PO4 and NO3 by microalgae in OMW and OWW. 

4. Conclusions  

Although microalgae can grow in these olive mill wastewaters and show potential 

for its bioremediation, further studies will not be feasible if this effluent is not subjected 

to a more complex primary treatment, due to its toxicity. Some viable options could be 

physicochemical methods, such as coagulation-flocculation and chemical oxidation, such 

as Fenton or photo-Fenton, to reduce organic matter, turbidity and toxicity.  

Considering the pollutants removal and biomass productivities, the species C. vul-

garis and A. protothecoides could be employed in the secondary treatment of olive mill 

wastewaters.  
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