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Abstract: With the increasing global population and agriculture facing numerous challenges due to 

climate change, finding sustainable solutions to food insecurity is crucial, as hunger and undernu-

trition continues to be a global challenge. Plant tissue culture has emerged as a promising technol-

ogy for improving and multiplying crops rapidly. However, this technique produces extensive data 

due to the intricate interactions between genetic and environmental components, challenging tradi-

tional statistical methods. To address this, researchers are now employing Machine Learning tech-

niques which excels in handling large, intricate datasets. Thus, current machine learning applica-

tions in plant tissue culture research are presented in this mini review.  
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1. Introduction 

Scientific and technological progress has revolutionized every aspect of human ex-

istence in the modern era. From personal well-being to agriculture, innovation has been 

critical in meeting the ever-increasing demands of the world’s growing population [1]. As 

the global population continues to rise, the urgent need for a consistent supply of basic 

essentials particularly food, becomes more apparent. This demand has pushed agricul-

tural advancement to the forefront, where higher yields, superior traits and resistance to 

biotic and abiotic stress and other desired agronomic traits have become critical. In this 

context, plant tissue culture has emerged as a technique for achieving these goals [2]. 

Plant tissue culture often referred to as micropropagation or in vitro culture is a 

method of growing plants in a nutrient-rich medium under regulated and sterile environ-

ment [3]. Explants, such as leaves, roots, and stems, are used to start plant cultures. Ex-

ploiting the totipotentiality of plant cells, these explants can generate into complete plants, 

yielding numerous plantlets. All the necessary prerequisites for the growth of the explants 

are supplied by the nutrient media [4]. Plant cultures find diverse applications, including 

the mass production of superior plants, genetic modification, preservation of germplasm, 

and production of disease-free plants. [5]. 

The development of plants in cultures is influenced by factors such as the composi-

tion of the nutrient media, plant genotype, age and explant type, plant growth regulators 
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(PGRs), level of phytohormones among others [6]. The complexity and unpredictability 

of data resulting from these variables pose challenges for analysis using conventional sta-

tistical methods like linear regression and ANOVA [7]. Machine learning (ML) techniques 

have come to be an effective technique for addressing this challenge [8], allowing comput-

ers to learn from data and experience, facilitating predictions and classifications [9]. These 

techniques include supervised learning in which models are intentionally trained on la-

belled datasets for accurate classification and prediction [9], unsupervised learning which 

discovers patterns in unlabeled data for analysis and clustering [10] and reinforcement 

learning which learns through action [11]. Recent advances in plant tissue culture research 

have employed ML models to interpret complex and nonlinear plant culture data [12]. 

Hybrid approaches that combine ML and optimization algorithms have been used to 

study the relationship between variables such as culture medium composition and plant 

growth traits enabling researchers to identify optimal inputs for maximizing plant bio-

mass [12], [13]. This paper offers a succinct summary of the current and potential applica-

tions of ML algorithms in plant tissue culture research, laying the framework for applying 

this technology in plant improvement through plant culturing. 

2. Review of Related Machine Learning Based Approaches in Plant Tissue Culture 

Processes 

Artificial Neural Networks (ANNs) such as neuro fuzzy logic, generalized regression 

neural network (GRNN), probabilistic neural network (PNN), radial basis function (RBF), 

and Adaptive Neuro-fuzzy Inference System (ANFIS) are commonly applied in plant tis-

sue culture research. Apart from ANN’s, other ML algorithms such as support vector ma-

chine (SVM), random forest, and multilayer perceptron (MLP) are also used. These ML 

models can be improved using varying optimization algorithms like Symbiotic Organisms 

Search (SOS), Genetic Algorithm (GA), fast Nondominated Sorting Genetic Algorithm II 

(NSGA-II), and Nondominated Sorting Genetic Algorithm (NSGA), Multi-Objective Ge-

netic Algorithm (MOGA). 

2.1. Application of Machine Learning in Modelling and Optimizing Plant Culture Mediums 

The Murashige and Skoog medium (MS) has long been used as a foundational me-

dium for starting plant cultures [4]. Its use has however been reported to result into certain 

physiological challenges, potentially stemming from the concentrations of carbohydrate 

[14], PGRs [15] or other constituent of the basal media. Consequently, some cultures and 

plants are incompatible with MS, necessitating changes to its components [16]. Neverthe-

less, modifying the components of the culture medium can be challenging due to its com-

plexity. Employing ML models streamlines this process, saving time and reducing costs. 

Several studies have employed ML algorithms to model and optimize plant culture media, 

offering the potential to enhance plant growth and productivity. These algorithms can 

forecast the ideal composition of culture media and can undergo further optimization us-

ing various techniques to boost their effectiveness. To optimize and forecast the most op-

timal hormonal combination for enhancing the growth of Garnem (G × 15) rootstock in 

vitro, [13] employed an ANN paired with a GA to evaluate the impact of varying concen-

trations of different PGRs on certain growth parameters. Notably, the ANN-GA model 

attained 98% accuracy in predicting the optimal hormonal combination. Furthermore, the 

model suggested a combination of 1.02 mg/L of 6-Benzyleaminopurine (BAP) and 0.098 

mg/L of Indole-Butyric Acid (IBA) for maximum proliferation of Garnem rootstock. Simi-

larly, [17] conducted a comparative assessment of multiple ML models to model and fore-

cast the in vitro development of cannabis as influenced by carbohydrate concentration 

and light quality. These included GRNN, MLP, and ANFIS. Each of these models was 

paired with four distinct optimization algorithms and although the disparities among the 

models were minimal, the GRNN-SOS pair outperformed all others across all assessed 

parameters. Likewise, in [18] MLP was used to predict the optimal medium composition 
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for the germination of some plum and apricot varieties. The MLP demonstrated a strong 

correlation between the expected and experimental result of all assesses growth parame-

ters, underscoring the model’s high level of performance. 

Adequate mineral nutrition plays a crucial role in promoting the growth of cultured 

plants. Inadequate mineral supply can lead to morphological abnormalities and reduced 

survival rates [19]. Thus, finding the right mix of minerals is of paramount importance. 

Numerous studies have been conducted to refine this strategy. Employing ANN-GA, [12] 

developed an innovative nutritional medium: Yadollahi, Arab and Shojaeiyan medium 

(YAS) for enhancing the in vitro growth of Garnem. This optimized medium when com-

pared with the traditional MS and woody plant (WP) mediums, yielded significantly 

greater fresh weight, shoot length, and dry weight. In another study, ANN-GA was uti-

lized to build a new optimized medium (R medium) that promoted Kiwi berry in vitro 

growth and reduced physiological abnormalities better than previously used media. The 

GA predicted the optimal mineral mix to maximize all measured output [19]. The utiliza-

tion of ML and optimization algorithms has brought about a transformation in analysis of 

large datasets, enabling researchers to reveal detailed patterns and hidden links between 

plant growth parameters and culture medium composition. This has enabled the tailoring 

of culture mediums compositions to the unique needs of various plants. 

2.2. Machine Learning Application in In Vitro Sterilization 

It is critical in the field of plant invitro culture to ensure the development of healthy 

and viable plant material. However, the continuous problem of microbial contamination 

is a serious impediment to the healthy growth of plant tissue cultures. Therefore, in vitro 

sterilization is critical, involving the use of physical and chemical procedures to remove 

impurities [20]. Before now, in vitro sterilization was done using traditional techniques 

that were prone to errors, time-consuming and labor-intensive. Researchers have begun 

to explore the use of ML to enhance the efficiency and precision of the sterilization process, 

which involves the development of predictive models that can assist in selecting and com-

bining sterilization agents and conditions optimally. This is achieved through the analysis 

of extensive datasets containing experimental outcomes. Numerous studies have show-

cased the effectiveness of ML and optimization techniques in elevating the quality of plant 

tissue culture sterilization, underscoring their potential to expedite and enhance the pro-

duction of top-tier plant materials. In [21], a GRNN-GA approach was employed to fore-

cast and enhance the concentration of disinfectants and immersion duration required for 

the sterilization of cannabis, aiming to improve its in vitro growth. The model exhibited 

strong performance, achieving an accuracy score exceeding 90%. During the validation 

process, the forecasted optimal combination of 0.008% hydrogen peroxide, 4.6% sodium 

hypochlorite, with an immersion time of 16.81 min, effectively eliminated contamination, 

yielding a contamination rate of 0%. In a similar context, [22] applied an MLP-NSGAII 

approach to optimize the in vitro sterilization process of chrysanthemum. Seven variables, 

encompassing AgNO3, Nano-silver, HgCl2, Ca (ClO)2, NaOCl, H2O2, with immersion 

durations, were the input parameters used for predicting the contamination frequency 

and explant viability. The model exhibited an accuracy rate of over 94%. Furthermore, it 

indicated that using NaOCl concentration of 1.62% and immersing for 13.96 min, can re-

sult in 0% contamination frequency and 99.98% explant viability. 

2.3. Machine Learning Applications in Somatic Embryogenesis 

Somatic embryogenesis is the process of growing embryos from plant cells that are 

not typically involved in reproduction (leaf, stem, root, or epidermal cells). This process 

eliminates the requirement for sexual reproduction. The presence of somatic embryos sig-

nifies the capacity of plant cells to exhibit totipotency [23]. These somatic embryos find 

utility in a range of applications, including the cloning of superior cultivars, the creation 

of artificial seeds, genetic enhancement, and the production of secondary metabolites, 
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among other uses. In [15], a comparison was made between MLP and support vector re-

gression (SVR) to assess their predictive accuracy for studying the impact of PGRs on so-

matic embryogenesis of chrysanthemum. SVR consistently outperformed MLP in all as-

pects. The greatest number of somatic embryos per explant (56.24) and the highest embry-

ogenesis rate (99.09%) were achieved using a medium containing, 4.70 M kinetin (KIN), 

9.10 M 2,4-dichlorophenoacetic acid (2,4-D) and 18.73 M sodium nitroprusside.[24] em-

ployed an image-processing approach along with an MLP model to forecast the optimal 

input combinations (sucrose concentration, 2,4-D concentration and explant age) for ob-

taining the best physical characteristics of embryogenic callus (perimeter, area, true den-

sity, roundness and Feret diameter) and the highest count of ajowan somatic embryos. 

The most effective parameters were found to be 1.5 mg/L of 2,4-D, 2.5% (w/v) sucrose, 0.5 

mg/L of KIN, and 15-day-old explants, both in meas 

ured and predicted somatic embryo production, highlighting the model’s accuracy. 

Somatic embryos undergo different developmental stages, including globular, elongated, 

heart-shaped, expanded, torpedo-shaped, and cotyledonal phases. Due to the challenging, 

costly, and time-consuming process of selecting somatic embryos in embryo cultures, ma-

chine learning models are utilized to automate the classification of these embryos into 

various stages [24].Techniques like image recognition are applied to streamline the iden-

tification of somatic embryos that are biologically suitable for transfer to another growth 

medium, as well as to determine which embryos should be excluded from further culti-

vation, as demonstrated in the research presented by [25]. Similarly, [26] used a penalized 

logistic regression model to classify the somatic embryos of some based on their transmit-

tance, absorption, reflectance, or excitation spectra, predicting which ones had the poten-

tial to develop into healthy plants. The model demonstrated strong performance when 

applied to previously unseen somatic embryos with diverse genetic backgrounds. 

2.4. Machine Learning Applications in Rooting and Acclimatization 

Acclimatization and the process of in vitro rooting play pivotal roles in plant tissue 

culture [27]. Rooting is a crucial factor for the growth of plants [28]. Acclimatization hap-

pens when cultivated plants adapt to greenhouse or field conditions. Plantlets growing in 

controlled in vitro environments are exposed to specialized conditions designed to reduce 

stress and enhance plant growth. This results in plantlets with altered anatomy, physiol-

ogy and morphology, necessitating gradual exposure to external condition [29]. Rooting 

and acclimatization primarily rely on the levels of auxin and sucrose [29]. In [30], an MLP-

GA combination was utilized to predict and optimize the combination of inputs that 

would yield the best composition for promoting an optimal number of roots, nodes per 

plantlet, ex vitro leaves and height during grapevine acclimatization. The model per-

formed well with a correlation between observed and predicted values close to one. In 

another study detailed in [31], neuro-fuzzy logic was applied to model the impact of light 

intensity and sucrose content/concentration on kiwifruit acclimatization. The model suc-

cessfully identified optimum level and combinations of inputs to achieve maximum 

growth and development during in vitro rooting and acclimatization. In [32], a design of 

experiments (DOE) approach was used to create a five-dimensional IV-design space, cou-

pled with a hybrid of artificial neural networks (ANN) and fuzzy logic to assess the effects 

of varying mineral concentrations in a Hoagland mineral solution on growth parameters 

(newly formed shoot length, total leaf number, leaf area, leaf chlorophyll content, and 

hardening efficiency) and three physiological disorders during the ex-vitro acclimatiza-

tion of Actinidia arguta. The neuro-fuzzy logic effectively modeled all growth metrics and 

the occurrence of a physiological disorder known as leaf necrosis, showing a strong cor-

relation between observed and predicted values. The ‘IF-THEN’ rule of the model also 

revealed that Mg2+ and Ca2+ played a positive role in enhancing certain growth parame-

ters and preventing leaf necrosis but had opposing effects on leaf chlorophyll content. The 

addition of NO3 to the media had a detrimental impact on some parameters, while NH4+ 

in combination with Cu2+ or Mg2+ positively influenced several growth aspects. 
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3. Conclusions 

This research looks into the various applications of machine learning and optimiza-

tion algorithms in plant tissue culture. Multiple approaches have been used to optimize 

various parameters in plant tissue culture, which can be attributed to the processes’ non-

deter mistic and complex nature. The use of ML is this field is attributed to their demon-

strated success in analyzing massive amounts of datasets which allows the optimization 

of the process with fewer resources and less time. Future research could look into creating 

ML- based virtual simulations of tissue culture process to reduce experimental time and 

cost and also integrating ML with gene editing techniques to accelerate the development 

of new varieties. 
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