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Abstract: The Burr III distribution is extended in this work as a substitute for the numerous Burr III 

distributions. A new distribution is developed by applying the log transformation technique to de-

fine the transformed log Burr III distribution. Moments and quantile function are the structural fea-

tures established in this study. The model parameters are derived using the maximum likelihood 

technique. The applicability of the new distribution was assessed using real-world data on the trans-

formed total milk production in the first birth of 107 cows of the SINDI race. The results showed 

that the proposed distribution might be used as the optimal distribution for this data set. 

Keywords: burr iii distribution; failure rate; moments; quantile function; transformed log-burr iii 

distribution 

 

1. Introduction 

Burr (1942) developed a flexible family of probability distributions that can be de-

rived from a single differential equation [1]. Two members of this family, the Burr types 

III and XII, have been introduced by [2]. These distributions are crucial and frequently 

employed for modeling many real-life phenomena in diverse areas of application, includ-

ing ecology, agriculture, finance, survival analysis, forestry, medical sciences, reliability 

quality control, mechanical factors, life distributions, risk analysis, weather forecasting, 

consumer prices, and more [3]. 

There are both theoretical and practical reasons for us to propose this distribution. 

Theoretically speaking, the tail of a distribution is closely related to the distributions of 

extreme values [4]. In practice, one prefers a distribution that is flexible. The flexibility of 

Burr XII distribution has been studied in [5]. Compared with the Burr XII distribution, the 

Burr III distribution is more flexible in the sense that it covers a larger area in the skew-

ness–kurtosis space. The cumulative distribution function (CDF) of the Burr III distribu-

tion is expressed as: 

( )( ; , ) 1 ; , 0; 0YF y y y
   

−
−= +     (1) 

where , 0    are two shape parameters. The corresponding probability density func-

tion (PDF) is expressed as: 

( )
1

1( ; , ) 1 ,Yf y y y
   

− −
− − −= +   

(2) 
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Recently, many extensions of the Burr III distribution have been generated to provide 

more flexibility in modeling real life data sets from a variety of applications. Some notable 

among them are the beta Burr III distribution [6], applied to survival data, and the ex-

tended three-parameter Burr III distribution [4]. 

The extension of well-known distributions for modeling real data via generalized 

classes of distributions has received considerable attention during the last decade. In par-

ticular, the recent distributions proposed using the T-X approach include the exponenti-

ated odd Lindley-X family by [7], the Maxwell-Weibull distribution by [8], the Maxwell-

Lomax distribution by [9], the Maxwell-exponential distribution by [10], the odd beta 

prime-G family by [11], the odd beta prime-logistic distribution by [12], the odd beta 

prime Fréchet distribution by [13], the log-Topp-Leone distribution by [14], and more oth-

ers. 

The aim of this research is to apply the logarithmic transformation to the Burr III 

distribution to create a new effective and flexible distribution referred to as the log-Burr 

III distribution. The log-Burr III distribution is proposed by the logarithmic transfor-

mation of the famous Burr III distribution. To the best of our knowledge, this is the first 

attempt to study the log-Burr III distribution in the literature. 

The log-Burr III distribution is derived from the Burr III distribution in a manner 

similar to how the log-normal distribution is derived from the normal distribution. The 

resultant distribution has a long tail since the logarithmic transformation reduces a large 

observation to a small value. This study investigates whether this distribution is appro-

priate for modeling real data. We verify in the application section that the log-Burr III 

model is a better model for symmetrical and left-skewed data sets and can serve as an 

alternative to various extended versions of the Burr III distribution in many practical sit-

uations. 

The following summarizes the main motivations for proposing the log-Burr III distri-

bution. 

i. The log-Burr III distribution provides better fit than the traditional Burr III distribu-

tion. 

ii. The Burr III distribution offers symmetrical, and left-skewed densities with an up-

side-down bath-tub and decreasing failure rates. 

iii. The Burr III distribution was applied to fit a long-tailed real data, and it provides 

superior fits than the other competing distributions. 

The rest of this paper is outlined as follows: Section 2 presents the log-Burr III distri-

bution alongside its PDF and hazard rate function plots. Section 3 investigates some of its 

basic features. Section 4 discusses its parameter estimation method. Section 5 demon-

strates its usefulness and effectiveness by analyzing real data relating to Milk Production. 

Section 6 provides the concluding remarks. 

2. Developing Log Burr III Distribution 

In this section, we developed a novel continuous probability distribution to serve as 

an alternative to the Burr III distribution using a transforming approach. The novel distri-

bution is developed by transforming ( )logx y =  into the Burr III model to study the 

Log Burr III (LBIII) distribution, where 0   is an exponent parameter. The PDF of the 

proposed distribution can be obtained by considering 

( ; , , ) ( ; , )X Y

dy
f x f y

dx
    =    (3) 

In this regard, ( ; , )Yf y    is defined in (2) and 
1 xdy

x e
dx

 −= is the derivative of the 

transformed approach considered in this study. Therefore, the proposed LBIII distribution 

can be expressed as 
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where  is an exponent parameter and ,  are two shape parameters. Henceforth, the 

CDF of the LBIII distribution can be derived by differentiating (4) with respect to x  as 

( ) ( )( ; , , ) 1 ; , , 0; ,t

XF x e x
 

     
−

−= +   −    (5) 

2.1. Model Validity Check 

To determine whether the suggested LBIII distribution is a valid statistical distribu-

tion, the PDF in (4) must satisfy the following condition: 

( ; , , ) 1Xf x dx  


−

=   (6) 

To demonstrate this, consider substituting (4) as 

( )
1

1( ; , , ) 1 .x x

Xf x dx x e e dx
  

     
 

− −
− − −

− −
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1

0

1 ,m dm





− −
= +   

(7) 

since, 

,xm e
−=  and 

1
.

x

dm
dx

x e
  − −

= −   (8) 

Also, letting 

( ) 2

1 1
1 , ,

1

dw
m w dm

w m w
= + =  = −

+
  (9) 

Putting (9) into (8) we can receive 

1

1

0

( ; , , ) 1.Xf x dx w dw   


−

−

= =    (10) 

The proposed LBIII model is a legitimate statistical distribution, as demonstrated by 

Equation (11). 

2.2. Failure Rate 

The failure rate of the proposed LBIII distribution can be determined using (4) and 

(5) as 

( )

( )
( )

1
1 1

( ; , , ) ; , , 0; ,

1 1

x x

t

x e e
h x x

e

 




  





     

− −
− − −

−
−

+
=   − 

− +

  (11) 

The probability plots for the PDF and failure rate of the LBIII distribution are pre-

sented in Figures 1 and 2 respectively. 

As shown in Figure 1, the LBIII distribution can be left-skewed and symmetric, as 

shown in (a) and (b). Similarly, the failure rate of the distribution could have both decreas-

ing and upside-down bath-tub, as shown in Figure 2a,b. 
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(a) (b) 

Figure 1. PDF plots of the LBIII distribution for various parameter values. 

 
(a) (b) 

Figure 2. Failure rate plots of the LBIII distribution for various parameter values. 

2.3. Mixture Representations 

The PDF of the LBIII distribution can also be presented as a mixture representation 

study in this section using the following procedure: 

Let us consider the generalized binomial expansion when 0c   as 

( ) ( )
0

1
1 1

c i i

i

c i

i
 


−

=

+ − 
+ = −  

 
   (12) 

Putting (12) into the PDF from (4) yields 
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which is the PDF of the LBIII distribution expressed as a mixture representation. 

3. Structural Features of the LBIII Distribution 

This section describes some features of the LBIII distribution, such as moments and 

the quantile function. 

3.1. Moments 

Suppose X  is a random variable that follows LBIII distribution, then the moments 

of the random variable X is defined as 

( ) ( ; , , )r r

XE x x f x dx  


−

=    (14) 

where ( ; , , )Xf x     is defined in (13). Substituting (13) into (14) it becomes 

( ) ( ) ( )11

0 0

2 1
i i xr r

i

i
E x x e dx

i







− ++ −

=

+ 
= −  

 
    (15) 

Let 

( )
( ) ( )

1

1
1 , ,

1 1

v dv
v i x x dx

i i x







  −

  
= + =  = 

+ +  
  (16) 

Putting (16) into (15) we can get 

( )
( )

( )
10

1
2 1

1

i

r

r r
i

i r
E x

i
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







+=

+−   
= +  

  +

   (17) 

3.2. Quantile Function 

The quantile function of the LBIII is derived by inverting (5) as 

 

1

1
1

log 1 ; 0,1qx u u






−   
= − −   
   

  (18) 

where u  has a uniform random variable with interval 0 and 1. 

4. Parameter Estimation 

In this section, the parameters of the LBIII distribution will be determined employing 

the Maximum Likelihood (ML) approach. 

Let 
1 2, ,... nx x x  denote the possible outcomes of a random sample of size n that was 

drawn from the LBIII model with vector parameter ( ), ,
T

  =ψ . To determine the ML 

estimator of the parameter ψ , the log-likelihood function of (4) denoted by  is given 

by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

log log log 1 log 1 log 1 i

n n n
x

i i

i i i

n n n x x e
      −

= = =

= + + + − − − + +     (19) 

Therefore, the ML estimator ψ̂  of ψ  can be derived by maximizing (19), this can 

be done by considering some statistical packages such R-package, and so on. 
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5. Applications 

The performance of the novel Transformed Log Burr III distribution is demonstrated 

in this section by using data from the first birth of 107 SINDI race cows. This distribution 

can be compared to existing distributions such as the Burr III and New Modified Burr III 

(NMBIII), and its performance is measured using information criteria such as the Akaike 

Information Criterion (AIC), Corrected Akaike Information Criterion (CAIC), Bayesian 

Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC). The dis-

tribution with the lowest value of those criteria should be considered the best fit for the 

data set. 

Data Set: Milk Production Data 

This data is presented as follows: The data considered in this study can be found in 

a study conducted by [15], and it comprises transformed milk production in the first birth 

of 107 cows from the SINDI race. 

The findings of the transformed log BIII distribution were compared to the outcomes 

of competing distributions in Table 1. 

Table 1 displays the estimated, AIC, CAIC, BIC, and HQIC for the proposed distri-

bution as well as the competing distributions. The proposed LBIII model has the lowest 

values of the AIC, CAIC, BIC, and HQIC. This demonstrates that the LBIII model is the 

best fit for the milk production data set. 

Table 1. Results for Milk Production data. 

Model Estimate AIC CAIC BIC HQIC 

BIII ̂  = 1.0970 163.1852 163.3006 168.5309 165.3523 

 ̂  =1.0946     

NMBIII ̂  = 0.2210 190.8067 191.0398 198.8252 194.0573 

 ̂  = 0.6682     

 ̂  = 1.1411     

LBIII ̂  = 1.1425 142.7657 142.9988 150.7842 146.0163 

 ̂  = 1.8952     

 ̂  = 1.8509     

6. Conclusions 

In this paper, we propose a novel transformed log BIII distribution as an alternative 

to the Burr III and New Modified Burr III distributions. The proposed distribution could 

be symmetrical and left-skewed, with an upside-down bath-tub and decreasing failure 

rates, and its many features are investigated. The adaptability of the novel distribution 

was demonstrated using real data sets relating to milk production at the first birth of 107 

SINDI race cows, and the findings revealed that this distribution fitted the data set. 
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