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Abstract: Photoacoustic imaging is commonly utilized in biomedical research due to its capability
to provide functional and structural details for imaging targets, featuring optical contrast and
ultrasound resolution. This imaging technique has also found applications in industry, particularly in
non-destructive testing, such as surface crack detection. However, the cost of photoacoustic systems
and the time required for scanning and image reconstruction limit their use in non-destructive testing.
In this study, a low-cost photoacoustic equipment, combined with machine learning techniques,
was applied to surface crack detection. This scanning technique achieved a 97% offline prediction
accuracy. Additionally, it demonstrated a reduction in system complexity compared to traditional
photoacoustic imaging techniques. This reduction in complexity results from using a single scanning
line as input to the machine learning model, unlike the imaging technique, which requires multiple
scanning lines for reconstructing the photoacoustic image.

Keywords: photoacoustic; ultrasound; crack; non-destructive testing; industry; machine learning;
Convolutional Neural Network

1. Introduction

Over the last decades, numerous researchers have explored fracture analysis to en-
hance material inspection techniques. Cracks in materials comes from product defects,
environmental influences like corrosion and fatigue [1], signify structural vulnerability [2].
Material cracking is a known contributor to mechanical system failure in transportation
research [3]. Various approaches have been devised, including strain gauges, visual cam-
eras, thermography, and others [4–7]. These techniques primarily rely on employing and
observing the same modality; for example, visual cameras utilize optical perturbations and
optical observation.

Photoacoustic measurement has emerged as a promising alternative to optical imag-
ing, addressing issues such as diffuse reflection from irregular surfaces [8]. This unique
approach employs optical disturbance but captures its effects acoustically, minimizing
optical analysis challenges related to scattering effects. While photoacoustic measurement
dates back to the 1800s, its complexity slowed the widespread adoption [9]. However, ad-
vancements in semiconductor and laser technology in the 1960s have transformed it into a
cutting-edge imaging technique [10]. Thus, it is widely utilized in the medical field [11–13].
Researchers have also reported successful applications of photoacoustic measurement in
detecting material cracks [14–16]. However, the cost of photoacoustic system, and the time
consumption for scanning and imaging reconstruction limits using it in non-destructive
testing. Therefore, in this study, low-cost photoacoustic equipment with machine learning
technique will be investigated in surface crack detection. This investigation reduces the
system complexity and the time consumption for detection compared with that when
photoacoustic imaging techniques is used.
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2. Method
2.1. Delay and Sum (DAS) Beamforming Technique

Delay and sum (DAS) beamformer is one of the simplest and most popular beamform-
ing technique in ultrasound and photoacoustic imaging. In this beamforming technique,
the photoacoustic image is reconstructed based on combining the delayed photoacoustic
signals as shown in Equation (1) [17,18]:

YDAS =
N

∑
i=1

RFi(t, ∆t), (1)

where, YDAS is the beamformer output, N is the number of transducer elements or scanning
lines, RFi(t, ∆t) is the delayed photoacoustic signal that is received by element or scanning
line number i, and ∆t is the time delay.

2.2. Machine Learning Model

The Convolutional Neural Networks (CNN) model architecture used is illustrated in
Figure 1. The first layer performs a convolution over the input spectrogram image with
32 kernels size 3 × 3, accompanied by Rectified Linear Unit (ReLU) [19] activation function.
The obtained feature maps are then sub-sampled using a max-pooling layer operating
over 2 × 2 squares. The second and third convolutional layers are the same as the first one
except they have higher number of kernels (64 and 128 respectively). The last sub-sampling
operation is max-pooling layer which operates over the entire sequence length. A batch
normalization [20] was used as an intermediate layer after each convolutional layer. For
regularization we added a dropout layer equal to 0.5 after the last max-pooling layer.
Finally, to classify the spectrogram image to see if it obtained from a cracked or uncracked
place, the output layer consists of a fully connected layer with a sigmoid activation function.

Figure 1. A flow-diagram of the CNN model architecture.

3. Experiment Setup

In this experiment, photoacoustic emissions were generated from a piece of black
plastic with four surface cracks that is shown in Figure 2B. The width of each crack was
almost 1mm. The photoacoustic emissions were generated from this phantom using a
pulse laser diode (PLD) (905D5S3J08X). The pulse width of each firing laser pulse was
100 nm. In addition, the output optical energy and wavelength of this PLD were 3 µJ and
905 nm, respectively. In this experiment, photoacoustic emissions were acquired by using
an open-source ultrasound board [21] with one element ultrasound transducer (C310-SU).
The centre frequency and bandwidth of this transducer were 5MHz and 90% of the centre
frequency, respectively. The scanning step of the ultrasound transducer in the lateral
direction was 0.1 mm. The received photoacoustic emission for each scanning point was
averaged 10 times before using it to improve its SNR. Figure 2A,C show the schematic
diagram of experiment setup and real photo for experiment, respectively. In this experiment,
1131 photoacoustic signals were acquired from a cracked place and 4522 photoacoustic
signals were acquired from an uncracked place. These received signals were converted
to spectrogram images before using them in the machine learning model. In this study, a
CNN classification model was used for detecting the presence of cracks in the surfaces. The
dataset was randomly split into two independent parts with 80% and 20% for training and
testing, respectively.
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Figure 2. (A) Schematic diagram of experiment setup, (B) A piece of black plastic with four surface
cracks, and (C) Experiment setup.

4. Results and Discussion

The received photoacoustic signals from black plastic with four surface cracks was
beamformed by using DAS beamformer as shown in Figure 3. The FIR bandpass filter
(2.5–7.5 MHz) with Hamming window were used in this beamformer. From Figure 3, the
place of surface cracks can be clearly defined compared with uncracked place. In this
experiment, 5653 photoacoustic signals are acquired. 1131 of these signals were acquired
from a cracked place and 4522 of these signals were acquired from an uncracked place.
These received signals were converted to spectrogram images before using them in the
machine learning model. In this conversion, the segment length was 100 samples, the
window type was hamming window, and the length of overlap window was 50 samples.
An example for cracked and un-cracked images are shown in Figure 4.

Figure 3. Photoacoustic image for black plastic with four surface cracks.

The CNN model was implemented using the Keras Python library. To validate the
performances of the model, the data set was randomly divided into two independent
sets 80% for training, and 20% for testing. The binary cross-entropy loss function and
the Adaptive Momentum (ADAM) [22] optimization approach with decay rate β1 = 0.9,
β2 = 0.999, and learning rate = 0.001 were utilized. The batch size was set to 32, and the
number of epochs for the training process is 50 with early stopping condition in case there
was no improvements over 10 epochs. After the process of training and validating the
model, the model yielded a loss of 0.121, and accuracy of 97%, and F1 score of 91.38%. The
confusion matrix that was used to calculate the performances of the model is presented
in Figure 5. From this figure, it can be noted that the model correctly classified all images
in the testing set that was acquired from an uncracked place, while missed to classified



Eng. Proc. 2023, 52, 0 4 of 6

15.9% of the images that was acquired from a cracked place (33 images out of 208). This
percentage of missing was due to imbalanced between cracks and uncracks that were used
to train the machine learning model.

Figure 4. (A) Un-cracked photoacoustic signal, (B) Un-cracked photoacoustic spectrogram image,
(C) Cracked photoacoustic signal, and (D) Cracked photoacoustic spectrogram image.

Figure 5. Confusion matrix summary.

When comparing this machine learning detection technique with the image recon-
struction technique, the machine learning technique reduced the complexity of the system.
This is because one scanning line is used as input to the machine learning model, unlike
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the imaging technique that needs multiple scanning lines to reconstruct the photoacoustic
image. For instance, to detect and image a single surface crack in this experiment, almost
20 scanning lines are needed to acquire. This results in consuming time and memory.
The number of scanning lines that are needs to imaging single crack could be increased
depends on the distance between imaging target and focus point of ultrasound transducer,
the size of scanning step, and the minimum size of the target crack. In addition, cracks
with different level can be easily detect using machine learning technique. This is unlike
the imaging reconstruction technique that is affected by the contrast level of the imaging
targets. For example, in Figure 3, it is difficult to discover the four cracks at the same time.
This is because the large contrast difference between cracks.

5. Conclusions

In this paper, the surface crack was detected by using photoacoustic technology with
machine learning. The offline prediction accuracy of surface crack detection model was 97%.
The machine learning detection technique reduced the system complexity and computation
time when compared with image reconstruction technique. In future work, the training data
for the machine learning model will be balanced to reduce the percentage of classification
missing. The machine learning model will be also developed to detect the internal and
surface cracks.
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