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Abstract: Accurately estimating the parameters for the equivalent circuit model (ECM) of lithium-

ion batteries (LiBs), especially those that are not provided in the manufacturer's datasheets, is crucial 

for improving their behavior modeling and understanding. Therefore, this study focuses on inves-

tigating a precise method named Rao-1 algorithm, for extracting the optimal values of the ECM's 

parameters. The primary objective is to minimize the difference between the estimated voltage de-

rived from the ECM and the measured voltage of the battery. To evaluate the effectiveness of this 

approach, a real-world driving data-based test profile is employed. Moreover, a comparative anal-

ysis is conducted against recent state-of-the-art optimization algorithms. Simulation results demon-

strate that the employed method is proficient in accurately and relatively quickly estimating the 

parameters of the ECM and surpasses other methods in terms of accuracy. 

Keywords: Lithium-ion batteries; Equivalent circuit model; Rao-1 algorithm; Parameters extraction; 

Optimization 

 

1. Introduction 

Lithium-ion batteries (LiBs) are currently a favored energy storage technology due to 

their remarkable advantages, including high energy density, low self-discharge rate, and 

exceptional cycle life. The availability of an accurate battery model is indispensable for 

effective Battery Management Systems (BMSs) and other renewable energy systems. 

Therefore, considerable research has been conducted to formulate sophisticated models 

aimed at precisely estimating the dynamic behaviors of LiBs [1]. Among the most versatile 

and accurate approaches capable of appreciating a wide range of battery scenarios and 

patterns are equivalent circuit models (ECMs) [2–4]. However, the process of parameter-

izing these models is critical for determining the battery's State of Charge (SoC) and state 

of health (SoH), and it can present several challenges. 

Metaheuristic algorithms (MAs), which do not rely heavily on a multitude of de-

signer-provided parameters, often drawing inspiration from the natural behavior of both 

biological and non-biological sources, are employed as powerful tools to address battery’s 

parameter estimation challenges. In this context, researchers have offered diverse compu-

tational techniques to deal with the trouble of the ECMs parameter extraction. 

As an illustration, the study in [5], researchers employed the Quantum Particle 

Swarm Optimization (QPSO) method to fine-tune unknown parameters within a simpli-

fied first-order fractional-order model (FOM). Similarly, Authors in [6] utilized the Honey 

Badger Algorithm (HBA) to estimate parameters in a data-driven model for a Vanadium 

Redox Flow Battery. Furthermore, recent advancements in the field of MAs have intro-

duced innovative approaches, including the Artificial Ecosystem Optimizer (AEO) [7], the 
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Cuckoo Search (CS) [8], the Artificial Hummingbird Optimizer Technique (AHOT) [9], the 

Bald Eagle Search algorithm (BES) [10], and the COOT algorithm (COOT) [11], all of which 

have been utilized to extract parameters from battery ECMs. 

In this study, we aim to investigate the application of the Rao-1 technique for param-

eter identification in LIB models based on the electrical ECM. In fact, several works have 

employed the Rao-1 method of estimation of transmission line parameters [12], parameter 

extraction in photovoltaic cell models [13], and various other research domains. However, 

to the best of our knowledge, the application of the Rao-1 method for identifying ECM 

parameters in lithium batteries has not been undertaken yet. 

To assess the efficacy of the Rao-1 methodology, a test profile based on real-world driving 

data [14] is employed as an optimization framework. Furthermore, a comparative analysis 

is executed in contrast to contemporary optimization algorithms, specifically, Arithmetic 

Optimization Algorithm (AOA) [15], Harris Hawks Optimization (HHO) [16], Leader 

Harris Hawks Optimization (LHHO) [17] and Chernobyl Disaster Optimizer (CDO) [18]. 

Simulation outcomes substantiate that the Rao-1 technique excels in its ability to accu-

rately and relatively rapidly estimate parameters inherent to the ECM and surpasses al-

ternative methods. 

2. Materials and Methods 

2.1. Equivalent Circuit Model (ECM) for Li-ion battery 

In this study, our emphasis revolves around the optimization of parameters within 

the extended Thevenin model, a model recognized for achieving a good equilibrium be-

tween precision and complexity. Illustrated in Error! Reference source not found., this 

model takes the form of a second-order (2RC) model, denoting the presence of two RC 

branches sequentially aligned with the internal ohmic resistance R0 and the Voltage 

source (Voc). The adopted model encompasses a pair of state equations ((1) and (2)) and 

a singular output equation (3) [19] outlined as follows: 

𝑆𝑂𝐶̇ = −
𝜂

𝑄𝐶
𝑖𝑏𝑎𝑡, (1) 

�̇�𝑖 = −
1

𝑅𝑖𝐶𝑖

𝑣𝑖 +
1

𝐶𝑖

𝑖𝑏𝑎𝑡 (2) 

𝑣𝑏𝑎𝑡 = 𝑉𝑜𝑐(𝑆𝑂𝐶) − 𝑅0𝑖𝑏𝑎𝑡 − ∑ 𝑣𝑖
𝑖=2
𝑖=1 , (3) 

Where 𝑆𝑂𝐶 is the State of Charge, QC is the battery nominal capacity (Ah), η is coef-

ficient of charging, 𝑖𝑏𝑎𝑡 is the output/input current, 𝑣𝑏𝑎𝑡  is the terminal voltage, 𝑣𝑖 de-

notes the voltage of the consistent RC branch, 𝑖 is the branch number, and 𝑅𝑖  and 𝐶𝑖 are 

resistance and capacitor of the corresponding RC branch. 

 

Figure 1. Schematic of the extended Thevenin (second-order) battery model. 

For easier use in an optimization algorithm, ordinary differential equations (ODEs) 

of 2RC model could be converted from continuous time representation to discrete-time 

ODEs [20]. Hence, a final discrete-time expression, i.e. Eq. (4), will be considered in this 

paper.  
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𝑣𝑏𝑎𝑡[𝑘] = 𝑉𝑜𝑐(𝑆𝑂𝐶[𝑘]) − 𝑅0𝑖𝑏𝑎𝑡[𝑘] − ∑ 𝑣𝑖[𝑘]

𝑖=2

𝑖=1

 (4) 

To include the battery dynamics differences between charging (indicated by “c”) and 

discharging (indicated by “d”) regimes, equation (4) was slightly modified as follows:  

𝑣𝑏𝑎𝑡[𝑘] = 𝑉𝑜𝑐(𝑆𝑂𝐶[𝑘]) − 𝑅0𝑐𝑖𝑐[𝑘] − ∑ 𝑣𝑖𝑐[𝑘]

𝑖=2

𝑖=1

− 𝑅0𝑑𝑖𝑑[𝑘] − ∑ 𝑣𝑖𝑑[𝑘]

𝑖=2

𝑖=1

 (5) 

The non-linear relationship between the Voc and SOC can be expressed as a sixth or-

der polynomial exponential function [21]: 

𝑉𝑜𝑐 = 𝑎0 + 𝑎1𝑆𝑂𝐶 + 𝑎2𝑆𝑂𝐶2 + 𝑎3𝑆𝑂𝐶3 + 𝑎4𝑆𝑂𝐶4 + 𝑎5𝑆𝑂𝐶5 + 𝑎6𝑆𝑂𝐶6 (6) 

Here, 𝑎0 to 𝑎6 are the polynomial coefficients. 

2.2. Rao-1 Algorithm 

The Rao-1 is a simple and recent metaphor less algorithm, that do not include any 

specific or complex parameters, updates the current solutions to converge toward the 

global solution using the following formula: 

𝑌𝑖,𝑗
𝑛𝑒𝑤 = 𝑌𝑖,𝑗

𝑡 + 𝑎1,𝑗 × (𝑌𝑏,𝑗
𝑡 − 𝑌𝑤,𝑗

𝑡 ) (7) 

where 𝑗 ∈ [1 Dim] is the 𝑗𝑡ℎ dimension (Dim) of the 𝑖𝑡ℎ solution (noted by 𝑌𝑖,𝑗
𝑡 ) dur-

ing the current iteration 𝑡. 𝑎1,𝑗is a random number selected from the interval [0 1]. The 

best and the worst solutions are denoted by 𝑌𝑏,𝑗
𝑡  and 𝑌𝑤,𝑗

𝑡 , respectively. Finally, equation 

(7) is used to determine the value of the 𝑖𝑡ℎ solution in the coming iteration. 

{
𝑌𝑖

𝑡+1 = 𝑌𝑖
𝑛𝑒𝑤 ; 𝑖𝑓 𝑓(𝑌𝑖

𝑛𝑒𝑤) < 𝑓(𝑌𝑖
𝑡)

𝑌𝑖
𝑡+1 = 𝑌𝑖

𝑡; 𝑒𝑙𝑠𝑒
 (8) 

2.3. Objective function 

Based on the LiB model descripted before, it can be concluded that different un-

known parameters (i.e., 𝑅0𝑐 , 𝑅1𝑐, 𝑅2𝑐, , 𝐶1𝑐 , 𝐶2𝑐 , 𝑅0𝑑, 𝑅1𝑑, 𝑅2𝑑, , 𝐶1𝑑, 𝐶2𝑑, 𝑎0-𝑎6) are involved in 

the battery model. To closely match the real battery behavior, it's essential to accurately 

identify these 17 parameters. This identification is based on a real-world driving dataset 

with the actual current profile depicted in Error! Reference source not found. [14]. Hence, 

Rao-1 is used to estimate and optimize these parameters using this experimental dataset. 

The Root Mean Square Error (RMSE) was selected as an objective function to find proper 

parameters by effectively minimizing the error between the estimated (𝑉𝑒𝑠𝑡) and experi-

mental (𝑉𝑒𝑥𝑝) terminal voltages. Consequently, the objective function (𝐹𝑅𝑀𝑆𝐸) based on 

the RMSE formula is given by: 

𝐹𝑅𝑀𝑆𝐸(𝑥) = 𝑀𝑖𝑛 {√
1

𝑁
∑ [𝑉𝑒𝑥𝑝(𝑖) − 𝑉𝑒𝑠𝑡(𝑖)]2

𝑁

𝑖=1
} (9) 
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Figure 2. Current profile of the real world driving Dataset. 

3. Results 

In this subsection, we present a succinct summary of the optimization results ob-

tained through the novel Rao-1 technique applied to the studied Lithium-ion Battery (LiB). 

The outcomes derived from the Rao-1 algorithm are systematically evaluated alongside 

the results obtained from four competing algorithms, namely AOA [15], HHO [16], LHHO 

[17] and (CDO) [18]. To ensure a fair and consistent comparison, all these techniques have 

been implemented within the MATLAB software environment, employing identical test-

ing conditions. These conditions include a fixed number of iterations (MaxIt=100), a con-

sistent population size (PopSize=30), and the execution of 10 independent runs for each 

method to uphold the reliability of the comparative analysis. 

Table 1. illustrates the achieved parameters, along with their corresponding RMSE 

values for both the Rao1 approach and its counterpart methods. Remarkably, the lowest 

RMSE value (4,3428 × 10−3) with a Std of 2,1852 × 10−3 was accomplished by the Rao1 

technique which proves the good stability and accuracy the this algorithm. Error! Refer-

ence source not found. illustrates the estimated battery voltage plotted using the best pa-

rameters obtained by Rao-1 method. Clearly, the estimated curve can reduplicate the ex-

perimental data with a high precision. 

Table 1. Optimal parameters acquired by Rao-1 and the other competitive algorithms. 

Items Rao-1 AOA HHO LHHO CDO 

𝑅0𝑑 2,5911E-02 2,7995E-02 3,2126E-02 2,5178E-02 2,7906E-02 

𝑅0𝑐 3,5487E-02 2,8551E-02 3,1999E-02 3,9332E-02 2,4125E-02 

𝑅1𝑑 7,0652E-03 1,0000E-04 1,0076E-04 1,1627E-02 8,6901E-03 

𝑅1𝑐 1,0000E-01 6,4655E-02 2,9843E-02 5,1134E-02 8,3717E-02 

𝐶1𝑑 6,2604E+02 8,8250E+02 5,7939E+00 7,0488E+02 9,0000E+02 

𝐶1𝑐 3,6262E+02 9,0000E+02 3,6243E+02 8,8082E+02 2,9654E+02 

𝑅2𝑑 4,9927E-02 3,2199E-02 6,5794E-02 1,8990E-02 5,4462E-02 

𝑅2𝑐 3,6745E-02 3,2037E-02 2,0816E-02 7,9016E-02 5,4139E-02 

𝐶2𝑑 6,4907E+03 9,0000E+03 2,7513E+03 8,8490E+03 9,0000E+03 

𝐶2𝑐 5,9332E+03 9,0000E+03 4,6047E+03 8,8377E+03 5,2192E+03 

𝑎0 3,2173E+00 4,0000E+00 3,6869E+00 3,3351E+00 3,2068E+00 

𝑎1 1,0000E+00 1,9418E-02 4,2354E-01 8,5170E-01 1,0000E+00 

𝑎2 -1,0000E-02 0,0000E+00 -3,8256E-03 -9,9321E-03 0,0000E+00 

𝑎3 6,6396E-04 5,5631E-11 7,7382E-04 7,9015E-04 7,7291E-04 

𝑎4 -1,0000E-04 0,0000E+00 -7,9211E-05 -3,0875E-05 0,0000E+00 

𝑎5 1,0000E-05 4,6992E-19 2,1822E-06 3,3216E-06 8,6717E-06 

𝑎6 -2,0351E-08 0,0000E+00 -4,3267E-08 -6,8963E-08 -8,3801E-11 

Min RMSE 4,3428E-03 1,3183E-02 1,1558E-02 6,1840E-03 5,9515E-03 

Std 2,1852E-03 8,3725E-04 6,7700E-03 4,5411E-03 5,6756E-03 
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Figure 3. Measured and estimated LIB voltage via the Rao-1 algorithm. 

Additionally, a visualization of the convergence curves generated by different algo-

rithms is showcased in Error! Reference source not found.. Evidently, this illustration 

further validates the computational effectiveness and accuracy demonstrated by the Rao-

1 algorithm, as it attains the optimal RMSE value by the 80th iteration. 

 

Figure 4. Convergence graphs for all implemented algorithms. 

5. Conclusion 

The aim of this paper is to evaluate the performance of the newly introduced Rao-1 

algorithm in identifying the unknown parameters for battery's Equivalent Circuit Model. 

The algorithm is constructed based only on arithmetic operation and do not include any 

specific or complex parameters. The Rao-1 approach was examined using high accuracy 

experimental data, and the achieved results demonstrated the effectiveness and reliability 

of the proposed method compared to other optimization approaches for parameter esti-

mation of LiBs. This algorithm accomplished a minimum RMSE, with a few number of 

iteration, of 4,3428 ×  10−3 and Std of 2,1852 ×  10−3, representing high accuracy and 

robustness in predicting the battery voltage comportment. Besides, with the high closing 

between the calculated and the real characteristic, Rao-1 approach can be used as an effi-

ciency tool for battery management systems.As a response to concerns about the potential 

impact of changing battery parameters on SOC estimation, we have proactively consid-

ered strategies to address this challenge. Our research leveraged real-world data to cap-

ture the actual operating conditions faced by Li-ion batteries, enhancing the algorithm's 

adaptability. Additionally, we recommend periodic recalibration of the battery model to 

align it with the evolving characteristics. Continuous monitoring and feedback mecha-

nisms can further enhance accuracy over time.As we move forward, we look to further 

explore and refine the Rao-1 algorithm and other prominent metaheuristic algorithms. We 

aim also to integrate them into battery management systems taking into account crucial 

factors such as temperature, aging, and other significant variables. This approach contrib-

utes to more efficient and reliable energy storage solutions. 
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