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Abstract: This study emphasizes the significance of beam-column joints (BCJs) within reinforced 

concrete (RC) structures and investigates their performance when subjected to seismic forces. Ac-

curately predicting the load-carrying capacity of exterior BCJs under seismic loading poses a signif-

icant challenge. The development of a reliable and user-friendly predictive model is of paramount 

importance for facilitating cost-effective and safe design practices for RC structures. To address this 

requirement, we propose an artificial intelligence (AI)-based model that utilizes gene expression 

programming (GEP) to accurately predict the load-carrying capacity of exterior BCJs under mono-

tonic loading conditions. The model is developed using GEP and utilizes a database of 128 joint 

load-carrying capacity results of exterior BCJs obtained from a validated finite element (FE) model 

using ABAQUS, which considers the effects of material and geometric factors, which have often 

been overlooked in prior studies. These factors encompass multiple aspects, including the beam and 

column dimensions, concrete material properties, longitudinal reinforcements in beams and col-

umns, and axial loads applied to the columns. This study also compared the results of the proposed 

GEP model with the numerical data obtained from the validated FE model, demonstrating good 

accuracy and reliability. The proposed model has the potential to improve the accuracy and relia-

bility of joint load-carrying capacity predictions, thereby aiding the design of safe and cost-effective 

RC structures. 
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2. Introduction 

In existing buildings that were not designed following modern seismic codes and the 

recommended capacity design method, the most commonly observed mode of failure is 

joint shear failure. Researchers have identified several influential parameters affecting the 

shear strength of BCJs, including the joint’s aspect ratio, the compressive strength of the 

concrete, and the presence of transverse reinforcement. These studies have shown that 

increasing the compressive strength of concrete can result in a corresponding improve-

ment in the shear strength of RC joints [1,2]. Researchers have developed numerous ana-

lytical and empirical models to predict the behavior of RC BCJs under cyclic loading con-

ditions. Lima et al. [3]conducted a comprehensive analysis, summarizing the existing 

models documented in the literature that aim to predict the shear strength of RC exterior 

BCJs. The field of computer engineering has witnessed a notable surge in the prominence 

of AI over the past years, permeating various industries. This advancement in AI technol-

ogy, specifically in machine learning (ML), has brought about a paradigm shift in ap-

proach, enabling the utilization of ML techniques to predict the shear strength of BCJs. In 
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his research, Murad [4] employed GEP as a computational tool to anticipate the shear 

strength of exterior beam-to-column joints under both biaxial and uniaxial cyclic loading 

conditions. These computational methods have demonstrated their potential in develop-

ing explicit models for forecasting the behavior of RC members. These techniques encom-

pass a range of applications, including the evaluation of cement strength utilizing fuzzy 

logic, ANN, and GEP [5]. Prior research has predominantly relied on individual-type 

learning algorithms, such as ANN-PSO [6], support vector machines (SVM), XGBoost [7], 

and decision tree (DT) families [8], as the principal ML algorithms. This array of ML algo-

rithms has been employed effectively in previous studies, underscoring their potential to 

enhance prediction capabilities within the domain of engineering structure. Alwanas et 

al. [9] employed the extreme learning machine method to predict joint failure modes while 

utilizing a multivariate adaptive regression spline model to estimate shear capacity. On 

the other hand, Naderpour and Mirrashid[10] introduced two distinct failure mode clas-

sifiers, based on decision tree algorithms for both interior and exterior BCJs. These contri-

butions offer valuable insights into the prediction of failure modes and shear capacity in 

BCJs, utilizing advanced machine learning and decision tree techniques.  

Previous research studies addressing the recognition of failure modes in BCJs have 

been constrained by limited training datasets. However, leveraging more extensive and 

diverse data sets can enhance the accuracy and precision of models used for recognizing 

failure modes. It is imperative to maintain continuous data collection and analysis to en-

hance the reliability and practical applicability of these models. The failure mode of BCJs 

is influenced by numerous parameters, including beam and column dimensions, concrete 

strength, stirrup ratios within beams, columns, and joint cores, as well as the reinforce-

ment ratios in both beams and columns. These interconnected factors collectively play a 

pivotal role in determining the failure mode of BCJs. 

For this investigation, a numerical dataset of 128 interior BCJs was collected using 

ABAQUS to construct a robust model employing GEP for predicting their load-carrying 

capacity. Subsequently, the GEP model was compared with the numerical results to 

demonstrate the robustness and reliability of the equation in accurately predicting the 

load capacity of exterior BCJs. 

2. Material, Methods and Model Validation 

The goal of the study was to investigate how a BCJ, a crucial part of special moment-

resisting frame (SMRF) structures, behaves in an RC structure. This study utilizes experi-

mental data from a large-scale BCJ test conducted by Badrashi et al. [11]. The model was 

designed to meet the codes and standards set for SMRF buildings and was constructed 

using the Abaqus software. The reinforcement detailing of the model is illustrated in Fig-

ure 1. The CDP (Concrete Damage Plasticity) model [12] is used as the governing consti-

tutive model for concrete material. The elastic-plastic model is adopted for modeling the 

steel behavior of steel material. Table 1 shows the properties of concrete and steel materi-

als. At the lower end, the column was secured by a pin joint, while at the upper end, it 

was supported by a roller joint, with the out-of-plane degree of freedom constrained. The 

embedded region method was utilized to account for the bond between steel and concrete. 
The upper end of the column was subjected to a vertical axial load of 191.229 kN. The 

cantilever end of the beam was subjected to a displacement-controlled loading, which im-

posed a monotonic load of 124 mm. To evaluate the performance of a RC BCJ using FEM, 

it is essential to validate the numerical model against experimental findings. The load-

displacement response of the numerical model was compared to experimental findings, 

which shows a good agreement in terms of ultimate and failure load and deformation, as 

shown in Figure 2. 
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Table 1. Material properties information of the study. 

Details Concrete Reinforcement Steel 

Mass Density(kg/m3) 2400 7850 

Compressive Strength (MPa) 13.79 414 

Yield Strength (MPa) - 275 

Tensile Strength (MPa) 1.379 414 

Poisson’s ratio 0.2 0.3 

Young’s Modulus (MPa) 19546 200000 

 

Figure 1. Dimensions and details of the exterior BCJ, all units are in mm. 
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Figure 2. Comparison of FEM and numerical results. 

3. GEP Algorithm 

GEP stands out as a genetic algorithm (GA) employed for the creation of mathemat-

ical models from input data, demonstrating domain independence. In contrast to tradi-

tional GAs and genetic programming (GP), GEP employs an exceptional chromosome 

representation approach. While GAs utilize linear strings of consistent length, and GPs 

employ a variety of nonlinear entities with differing sizes and shapes[13–15], GEP inno-

vatively integrates a fixed-length linear string with a branching structure that exhibits di-

versity in both size and shape. 

In the last decade, the benefits of GEP have led to its increasing recognition within 

the field of structural engineering. Numerous researchers [16] have harnessed GEP's ca-

pabilities to develop sophisticated models that accurately assess the capacity of various 

structural elements. In the scope of this study, GEP was effectively employed to predict 

the load-carrying capacity of exterior BCJs. 

Figure 3 illustrates the different stages that make up the optimization process within 

GEP. This process begins with the selection of control parameters, which encompass the 

function set, terminal set, fitness function, control parameters, and stopping condition. 

Prior to executing the evolutionary algorithm, the fitness function is defined, and an initial 

population of random strings, referred to as “chromosomes” in genetic programming ter-

minology, is generated. These strings are then transformed into expression trees, and the 

fitness scores of each chromosome are evaluated based on their results. If the fitness crite-

rion is not met, a roulette-wheel sampling method is employed to select specific chromo-

somes for mutation, resulting in the creation of new generations. Conversely, when the 

variables align closely with the fitness function, the chromosomes undergo optimization. 
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Figure 3. Flow chart representing steps of GEP [17]. 

4. Results and Discussions 

4.1 Parametric Study 

A total of 128 models were created in ABAQUS by changing different key parame-

ters, as shown in Figure 4. The dataset used for developing a reliable predictive model 

includes important influencing parameters. Identifying these parameters necessitates a 

thorough examination of experimental investigations. Critical factors, including the con-

crete compressive strength (𝑓′
𝑐
), beam reinforcement area (𝐴𝑏), column reinforcement 

area (𝐴𝑐), beam depth (𝐷), column width (𝐵), and axial load on column (𝑃) play a pivotal 

role.  
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Figure 4. Parametric study, (a) capacity vs. 𝑓′
𝑐
; (b) capacity vs. 𝐴𝑏; (c) capacity vs. 𝐴𝑐 ; (d) capacity 

vs 𝐷; (e) capacity vs. 𝐵; (f) capacity vs 𝑃. 

4.3 Proposed GEP Model for Estimating Load Carrying Capacity of BCJ. 

In this section, a GEP model is introduced to predict the flexural capacity of an RC 

beam. The equation utilized to represent the GEP models derived from the earlier men-

tioned dataset is extracted from the Sub ET (sub-elemental tail) of the genetic algorithm: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐴 × 𝐵 × 𝐶 (1) 

𝐴 =  {𝐿 − (
1061.2 + 𝑃

2
)

3/4

}

1/2

 

 

(2) 

𝐵 =

𝐷 + (
𝐵2 + 𝑓′

𝑐

3

4
− 29.75𝐷)

1/2

𝐿
 

 

(3) 

𝐶 = 1.5 (
𝐵 + 𝑓′

𝑐
− 80.8

𝐴𝑐 + 2𝐵 − 𝐷
) + 1.4 (4) 

The graphical representation of the estimation model's expression tree can also be 

observed in Figure 5. 
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Figure 5. Gene expression tree for the calculation of load carrying capacity, (a) sub-ET-1; (b) sub-

ET-2:(c) sub-ET-3. 

After developing the model, a statistical evaluation of its performance is conducted, 

often using metrics such as the coefficient of determination to quantitatively assess the 

model's effectiveness. The coefficient of determination (𝑅2), which assesses the reliability 

of the model, can be calculated using the expression: 

𝑅2 = 1 −
∑[𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒]2

∑[𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑚𝑒𝑎𝑛]2
 

(5) 

An 𝑅2 value approaching 1 indicates a precise prediction. The statistical evaluation 

of the proposed model's performance against the numerical results (referred to as 'Target') 

is presented in Figure 6. The calculated coefficient of determination (𝑅2) and correlation 

coefficient for the regression analysis are 0.91 and 0.95, which are in close proximity to 1. 
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Figure 6. Model Comparison with Targeted Capacity 

5. Conclusions 

The developed GEP-based predictive model proved to be a robust tool for estimating 

the load-carrying capacity of RC BCJs. By incorporating key parameters such as the con-

crete compressive strength, beam reinforcement area, column reinforcement area, beam 

depth, column width, and axial load on the column, this model achieved impressive ac-

curacy. This highlights its potential as a valuable tool for engineers and designers in the 

construction industry. 
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