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Abstract: Yield forecasting is of immeasurable value in modern viticulture to optimise harvest 1 

scheduling and quality management. Traditionally, this task is carried out through manual and 2 

destructive sampling of production components and their accurate assessment is expensive, time-  3 

consuming, and error-prone, resulting in erroneous projections. The number of inflorescences and  4 

flowers per vine is one of the main components and serves as an early predictor. The adoption   5 

of new non-invasive technologies can automate this task and drive viticulture yield forecasting   6 

to higher levels of accuracy. In this study, different Single Stage Instance Segmentation models  7 

from the state-of-the-art You Only Look Once (YOLO) family, such as YOLOv5 and YOLOv8, were  8 

benchmarked on a dataset of RGB images for grapevine inflorescence detection and segmentation,  9 

with the aim of validating and subsequently implementing the solution for counting the number  10 

of inflorescences and flowers. All models obtained promising results, with the YOLOv8s and the 11 

YOLOv5s models standing out with an F1-Score of 95.1% and 97.7% for the detection and segmentation  12 

tasks, respectively. Besides, the low inference times obtained demonstrate the models’ ability to  13 

be deployed in real-time applications, allowing for non-destructive predictions in uncontrolled 14 

environments. 15 

Keywords: Computer Vision; Digital phenotyping; Object segmentation; Precision Viticulture; Yield   16 

forecasting 17 
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1. Introduction 18 

The world wine sector is a multi-billion dollar industry with a wide range of economic 19 

activities, representing a vital part of the global economy growth [1]. One crucial aspect 20 

of achieving optimal results in viticulture is the yield assessment – the anticipation of the 21 

quantity and quality of grapes that a vineyard will produce in a given season. Traditionally, 22 

it is carried out by measuring three main yield components, the number of bunches per 23 

vine, the number of berries per bunch and the mass of a berry, each one partly responsible 24 

for the season-to-season spatial yield variability [2]. One of the earliest assessments can 25 

be conducted during spring growth, as the formation of inflorescence primordia (flower 26 

buds) determines the potential number of bunches that the vine will produce, while the 27 

number of flowers formed on an inflorescence determines the potential number of berries 28 

on that bunch [3]. However, as these tasks are carried out manually and assessed by visual 29 

inspection, end up becoming expensive, time-consuming and error-prone, as they are 30 

repetitive and meticulous, ultimately becoming fatiguing and overly dependent on the 31 

operator’s training and skills. 32 

The synergy between viticulture and cutting-edge technology has given rise to trans- 33 

formative advancements, leading to more pragmatic and modern approaches, reshaping 34 
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the sector landscape [4]. The most powerful and widely used technology in this area is 35 

computer vision (CV), employed to extract meaningful information of physical objects from 36 

images or videos [5]. The first approaches were based on more classic image processing  37 

and analysis techniques, focusing on counting the number of flowers per inflorescence 38 

[6–11]. It was therefore common to acquire images in controlled environments with artifi- 39 

cial backgrounds, where the inflorescences were already detached from the plant. Thus, 40 

conventional methods are primarily constrained by the necessity to meticulously choose 41 

suitable algorithms for tasks like feature extraction, shape identification, and categorization,  42 

and often require a degree of control over the environment [12]. Recently, Deep Learning  43 

(DL) models have emerged as potent tools, having a massive impact on the development  44 

of CV algorithms, due to their capacity to unravel and deal with complex scenarios [13]. 45 

Regarding viticulture, the accessibility and visibility of different yield components are  46 

two major challenges that CV-endowed systems face. The rates of occlusion for both in- 47 

florescence and bunch exceed 50% by a significant margin [14]. DL models have made it  48 

possible to achieve non-destructive predictive models that can be used in uncontrolled 49 

environments, not only in terms of detecting and counting flowers per inflorescence, but  50 

also inflorescences per vine, since these are more robust, with better responses to occlusion 51 

and overlapping problems [15–24]. 52 

The agricultural sector inherently complex and unstructured environment poses signif-  53 

icant challenges that can hinder the performance of these solutions. While DL models have 54 

demonstrated great promise, the existing literature still exhibits notable weaknesses that 55 

warrant attention [12], related to poor dataset quality and size and the methodologies and 56 

detection frameworks employed may not be optimized for the unique challenges posed by 57 

agricultural settings. Therefore, this research aims to analyze the performance of different 58 

state-of-the-art YOLO model versions to detect and segment grapevine inflorescences. The 59 

implementation of these models can be beneficial, as they can perform feature extraction 60 

and object detection in a single step, consuming less time and potentially be used in real- 61 

time applications, as well as providing support for future tasks, such as counting flowers 62 

per inflorescence. The main contributions of this study are as follows: (i) Acquire and make 63 

publicly available datasets of labeled grapevine inflorescences images. (ii) Benchmark the 64 

results of DL models for detection and segmentation of inflorescences in different grape 65 

varieties and phenological stages. 66 

2. Methods 67 

2.1. Data Acquisition and Processing 68 

A new RGB images dataset of grapevine inflorescences was collected throughout 69 

three grapevine phenological stages, according to the extended Biologische Bundesanstalt, 70 

Bundessortenamt und CHemische Industrie (BBCH) scale [25]: (i) BBCH Code 53 - Inflores- 71 

cences clearly visible; (ii) BBCH Code 55 - Inflorescences swelling, flowers closely pressed 72 

together; and (iii) BBCH Code 57 - Inflorescences fully developed; flowers separating. 73 

The images were acquired in an experimental vineyard of the Agrarian Campus of 74 

Vairão, of the Faculty of Sciences of the University of Porto (41°24’12.2 "N 2°10’26.5 "W), 75 

using a dual camera Xiaomi Redmi Note 7 smartphone with a resolution of 8000x6000 76 

pixels. The dataset includes images of the following national and international grapevine 77 

varieties: Touriga Nacional (VIVC-12594); Barroca (VIVC-12462); Tinta Roriz (VIVC-12350); 78 

Cabernet Sauvignon (VIVC-1929); Viosinho (VIVC-13109); Trajadura (VIVC-12629). 79 

Although colour is not a differentiating feature at this phenological stage, red and 80 

white grapevine varieties were considered mainly due to the differences they exhibit in 81 

terms of size and shape of the inflorescences. In addition, the images were collected 82 

in various lighting and perspective conditions, often presenting scenarios of occlusion 83 

and overlap of inflorescences by different structures, inherent to the plant (i.e., leaves, 84 

stems, trunks or other inflorescences) or to the vineyard trellis and training system itself 85 

(i.e., cordon or foliage wires), adding complex and varied visual information. A total of 86 

https://www.vivc.de/index.php?r=passport%2Fview&id=12594
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539 images compose the dataset, which is publicly available on the open-access digital 87 

repository Zenodo: https://doi.org/10.5281/zenodo.8332171. 88 

The high resolution of the images translates into a large amount of data to be processed 89 

by the DL models. Thus, the resolution of the images was decreased to 1254x1672 pixels, 90 

retaining the same aspect ratio without losing an excessive amount of relevant information 91 

for the models learning. Following this procedure, the images were manually annotated 92 

using the open-source Computer Vision Annotation Tool (see https://cvat.org/, accessed 93 

on 1 August 2023). Since it involves image segmentation, each annotation contains a bound- 94 

ing box around each object, representing its area, position, and class, and a segmentation 95 

mask that enables to associate each pixel within the bounding box to a particular class. The 96 

generated masks were used to produce YOLO format annotations. 97 

To train and validate the different models, the images were divided into 3 sets: (i) 98 

Train (60%); (ii) Validation (20%); and (iii) Test (20%). Train and Validation sets were 99 

artificially increase through Albumentations [26], a Python library for image augmentation, 100 

generating new data points from the existing dataset. The image transform operations 101 

were carefully chosen to only generate realistic vineyard images, such as: (i) CLAHE, (ii) 102 

Emboss, (iii) Sharpen, (iV) ISO Noise, (v) Random Fog, (vi) Spatter, (vii) Random Brightness 103 

Contrast, (viii) Blur, (ix) Gaussian Noise, (x) Horizontal Flip, and (xi) Shift Scale Rotate. 104 

These operations were not only applied individually, but combinations were also made, 105 

thus totalling 59 transforms applied to each image of the two sets. After the augmentation 106 

procedure, the dataset’s size increased to 26,027 images. The training and validation sets 107 

contained 19,500 and 6,420 images, respectively, while the test set was composed of 107 108 

images. 109 

2.2. Model’s Training and Inference 110 

To correctly identify grapevine inflorescences, four YOLO models were benchmarked, 111 

since they have a strong reputation for its accuracy and speed, which is beneficial for live 112 

inference tasks and real-time applications: (i) YOLOv5n; (ii) YOLOv5s; (iii) YOLOv8n; and 113 

(iv) YOLOv8s. The models were pre-trained with Microsoft’s COCO (Common Objects in 114 

Context) dataset [27] and through transfer learning, a fine-tune was performed to detect 115 

and segment grapevine inflorescences. Training sessions ran for 20 epochs, with a batch 116 

size of 16. PyTorch [28] was employed for the training and inference tasks, using a NVIDIA 117 

GeForce RTX 4060 graphics processing unit (GPU) with 8 GBs of available memory. 118 

In segmentation tasks, a mask is predicted. A successful prediction is one which 119 

maximizes the overlap between the predicted and true objects. The two main metrics 120 

used to assess a “correct prediction” are the Intersection over Union (IoU) and F1-Score. 121 

Additionally, the metrics used by the Pascal VOC challenge [29], Precision × Recall curve and 122 

Average Precision (AP), were chosen to better benchmark the DL models. A key step in the 123 

models inference is the optimisation of the confidence threshold. For this purpose, a cross- 124 

validation technique was used. the F1-Score was computed for all the confidence thresholds, 125 

in the validation set, from 0% to 100%, into steps of 1%. The confidence threshold that 126 

optimises the F1-Score was selected and then the models were evaluated on the test set, 127 

considering a IoU >= 90%. 128 

3. Results and Discussion 129 

The models required defining the best confidence threshold that maximises the F1- 130 

Score before evaluating their performance. Usually, higher thresholds increases Precision, 131 

the percentage of correct detections, but decreases Recall, the ability to detect all relevant 132 

objects. Table 1 shows the results across the different metrics. The confidence threshold 133 

values presented lead to the best balance between Precision and Recall and all four models 134 

found their best F1-score above 65%, with the highest belonging to the YOLOv8s model at 135 

82.7%. Overall, the results for the four models are encouraging and very similar, all above 136 

90%. YOLOv8s has the best performance with regard to the location of objects in the image 137 

(F1 Box = 95.1%), however the YOLOv5s outperformed all the other models in terms of the 138 

https://doi.org/10.5281/zenodo.8332171
https://cvat.org/
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segmentation mask’s quality (F1 Mask = 97.7%). Another important factor when it comes to  139 

real-time applications is the inference time. Both YOLOv5 models are faster at detecting  140 

and segmenting than their YOLOv8 counterparts, which is to be expected given the size of  141 

the models. 142 

Table 1. Detection and Segmentation results with the test set considering optimized confidence 

thresholds. (P = Precision; R = Recall; F1 = F1-Score) 
 

Model 
Confidence 

Threshold (%) 
P Box (%) R Box (%) F1 Box (%) P Mask (%) R Mask (%) F1 Mask (%) Speed (ms) 

YOLOv5n 76.1 93.5 91.7 92.6 96.3 94.5 95.4 4.5 
YOLOv5s 67.8 93.8 96.3 95.0 96.4 99.1 97.7 9.6 
YOLOv8n 73.0 92.8 94.9 93.8 95.5 97.8 96.6 6.8 

YOLOv8s 82.7 93.0 97.2 95.1 94.7 99.1 96.9 12.3 

 

To better understand the performance of the models and, above all, identify flaws 143 

and areas of improvement, it is essential to analyse the images from the test set. The 144 

strong performance is evident in all the models (a), but it is clear that the results could 145 

have been better had it not been for some errors, such as non-detections (b), detections of 146 

non-annotated inflorescences (c) and multiple detections of the same inflorescence (d), as 147 

Figure 1 illustrates. 148 

 

(a) (b) (c) (d) 

Figure 1. Detection and segmentation of grapevine inflorescence test set samples: (a) correct detec- 

tion (YOLOv5n), (b) missed detection (YOLOv5s), (c) detections of non-annotated inflorescences 

(YOLOv8n) and (d) multiple detections of the same inflorescence (YOLOv8s). Red bounding boxes 

represent the models predictions and blue bounding boxes represent the groundtruth annotations. 

To understand the relevance of the results obtained, it becomes essential to compare 149 

them with the current literature. To the authors’ knowledge, all the models evaluated 150 

outperformed the existing literature, as far as inflorescence segmentation is concerned, with 151 

the advantage of using a robust dataset under uncontrolled conditions. Certain studies 152 

have taken the approach of capturing images at night using artificial light, allowing for 153 

greater homogeneity, trying to extract the complexity provided by the background. These 154 

are the cases of Palacios et al. [20] and Rahim et al. [22], who through the SegNet (VGG19) 155 

and Mask-RCNN models obtained F1-Scores of 93.0% and 94.3%, respectively. However, it 156 

should be noted that the images were taken at a longer distance, which makes the task of 157 

detection and segmentation more difficult. The scarcity of images is also a problem, with 158 

the majority of works presenting datasets with less than 10,000 images. Rudolph et al. [16], 159 

for example, tested a AlexNet-based FCN on just 10 images, achieving a mean IoU of 76.0%. 160 
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 All in all, the results presented are hopeful about the success of detecting and segment- 161 

ing inflorescences, but drawbacks such as the low robustness of the datasets and the poor 162 

specification of the evaluation metrics need to be addressed in order to take the next step 163 

towards automating these tasks. 164 

4. Conclusions 
 

165 

In this paper, four pre-trained YOLO models were benchmarked in grapevine inflores- 
 

166 

cence detection and segmentation. One dataset of inflorescence images was acquired under 167 

uncontrolled conditions for that purpose. 168 

The results obtained were promising, with all models achieving F1-Scores above 90%. 169 

The YOLOv8s and YOLOv5s models stood out, achieving a F1-ScoreBox of 95.1% and a 170 

F1-ScoreMask of 97.7%, for the detection and segmentation tasks respectively. Allied to this 171 

performance, the low inference times recorded (under 13ms), where the Yolov5s model 172 

showed the best trade-off, prove the suitability of these models for deployment in real-time 173 

applications and the ability to support algorithms capable of counting flowers in the field 174 

in a non-destructive way, allowing for more accurate and robust sampling and forecasting. 175 

In perspective, future work should go through: (i) enlarge the dataset with images 176 

from farther distances, to be able to infer the number of inflorescences per vine ; (ii) evaluate 177 

the performance of these models in real-time conditions in a vineyard and (iii) incorporate 178 

these models into a framework that allows the subsequent counting of the flower number 179 

per inflorescence. 180 
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