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Abstract: Copper (Cu) or germanium (Ge) was added to the perovskite compounds to stabilize the 

photoactive α-phase of formamidinium-cesium lead triiodide. The strain for the PbI6 octahedra was 

relaxed by the Cu doping, which increased the displacement of formamidinium (FA) molecules, 

resulting in increasing the kinetic energy. The 3d orbitals of Cu were localized near the conduction 

band minimum and valence band maximum, which suppressed carrier diffusion resulting in lower 

efficiencies of the cells. The structural distortion for PbI6 octahedra was caused by the Ge doping, 

which decreased the displacement of FA molecules, resulting in a decrease in the kinetic energy. 

Suppression of formation of photo-inactive δ-phase resulted in formation of the α-phase. Electron 

density distribution showed the charge transfer from Ge to iodine (I) ions, which promoted carrier 

diffusion from I 5p to Ge 4p orbitals. The cells doped with 12.5% Ge also provided photovoltaic 

properties and a single phase structure. 
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1. Introduction 

Organic-inorganic hybrid perovskite solar cells are being studied worldwide as next-

generation solar cells due to their high conversion efficiencies and easy fabrication method 

[1-4]. To develop commercial perovskite solar cells in the future, photovoltaic properties 

and long-term stability are required [5-9]. Among various types of perovskite crystals, 

formamidinium cesium-lead triiodide (FA1-xCsxPbI3) perovskite crystals have provided 

high efficiency and stability [10,11]. However, due to photo-inactive δ-phase of FA1-

xCsxPbI3 perovskite crystals, optimization of compositions and formation-conditions of 

thin films is required [12-14]. Substitution of Pb by other elements such as Sn [15-18], Cu 

[19-24],1 Co [25], Ge [26-28], or Eu [29,30], would be one of the methods to optimize the 

electronic and crystal structures and to improve the photovoltaic properties. For example, 

adding a small amount of Sn to FA1-xCsxPbI3 perovskite crystals suppressed the phase 

transition from the α- to δ-phase, resulting in longer carrier lifetime and smaller temper-

ature dependence [31]. As the same group 14 element as Pb, Ge was expected to provide 

a potential substitute for Pb and effective to suppress the photo-inactive δ-phase [32].  

The purpose of this work is to investigate the crystal structure and properties of Cu 

or Ge-doped FA1-xCsxPbI3 perovskite crystals from the first-principles calculations and 

experiments. The effects of Ge or Cu on the FA1-xCsxPbI3 crystals were investigated by X-

ray diffraction (XRD), current density-voltage (J-V) characteristics, band structures, par-

tial density of states (pDOS), Born–Oppenheimer molecular dynamics calculations 

(BOMD), and Car-Parrinello molecular dynamics calculations (CPMD). 
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2. Materials and Methods 

The present perovskite solar cells were prepared by the same method as reported in 

the previous works [33-35]. For preparing the perovskite compound, a mixture of CH5N2I 

(FAI), CsI, PbI2, PbCl2, GeI2, N-methyl-2-pyrrolidinone (NMP, 100 μL) with the desired 

molar ratio in N,N-dimethylformamide (DMF, 0.5 mL) was stirred at 70 °C for 24 h. For 

the 2% GeI2 added device, the mole of FAI, CsI, PbI2 and GeI2 was adjusted to be 0.996 M 

(85.6 mg), 0.204 M (26.5 mg), 1.176 M (271.1 mg) and 0.024 M (3.9 mg). The perovskite 

solutions were spin-coated on TiO2 with air-blow at three times [36-38]. A solution of dec-

aphenylcyclopentasilane (DPPS, Osaka Gas Chemical, OGSOL SI-30–15) was prepared in 

chlorobenzene (1.0 mL) and dropped onto the perovskite layer during the last stage of the 

spin-coating process [39,40]. DPPS was used as a hole-transporting material to protect the 

cell from moisture and oxygen [41,42]. Then, the substrate was annealed at 150 °C for 10 

min. All procedures were performed in air atmosphere. A gold (Au) electrode was depos-

ited as the top electrode. The structure of the solar cells is denoted as FTO/TiO2/perov-

skite/DPPS/spiro-OMeTAD/Au. The prepared cells were stored at a temperature of 22 °C 

and humidity below 30%. 

The ab initio quantum calculations were performed using the Vanderbilt ultrasoft 

pseudo-potentials, scalar relativistic generalized gradient approximations and the 

Perdew-Burke-Ernzerhof exchange-correlation functional and density functional theory 

without consideration of spin-orbital coupling effect (Quantum Espresso software). The 

details of the calculation methods were reported in the previous works [43-45]. 

3. Results and discussion 

3.1. First-principles calculation 

First-principles calculations for Cu- or Ge-doped crystals were performed to calculate 

the band structures and pDOS for each system after structural optimization at 300 K. For 

the Cu-doped perovskite in Figure 1(a), the 5p orbitals of I atom and 3d orbitals of the Cu 

atom dominate near the VBM. The 6p orbitals of the Pb atom and the 3d orbitals of the Cu 

atom dominate near the CBM. The localization of the 3d orbital of Cu near the VBM and 

CBM suppressed the carrier generation and diffusion. For the Ge-doped crystals in Figure 

1(b), the 6p orbital of the Pb atom and the 4p orbital of the Ge atom overlap and dominate 

in the conduction band. Charge transfer from 5p orbital of the I atom to 4p orbital of the 

Ge atom would promote carrier generation. These results indicate that Ge-doped 

FACsPbI3 perovskite solar cells would have better photo-voltaic properties. 

Perovskite cubic crystals with partial substitution of Cu or Ge at the Pb site were 

analyzed by the first principles CPMD calculations. After equilibrating electronic and nu-

cleus state at 0 K, enthalpies and relaxation process of kinetic energy were calculated at 

300 K. Distances from the initial positions of carbon (C) in FA, Pb, Cu, and Ge are shown 

in Figure 1(c). The Cu-doped crystals showed smaller deviations of the Cu atoms from 

their initial positions and smaller distortions for the CuI6 octahedron. As a result, signifi-

cant change is observed at the position of C in FA. On the other hand, large shift from the 

initial Ge position is observed for the Ge-doped crystal, resulting in the significant strain 

in the crystal. Then, the deviation of C positions in FA was suppressed. Differences in the 

strength of the bonds between the central metal and I and the orientation of the orbitals 

caused differences in the distortion, which would change the interaction between the FA 

molecule and I, changing the kinetic behavior of the FA. 
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Figure 1. Calculated band structures and partial density of state of (a) FA0.875Cs0.125Pb0.875Cu0.125I3 and 

(b) FA0.875Cs0.125Pb0.875Ge0.125I3. (c) Displacements of C position in FA along z-axis. 

3.2. Device characterization 

FACsPbI3 based perovskite solar cells added with 2% Cu, 2% Ge, 12.5% Cu, or 12.5% 

Ge were fabricated and characterized. XRD patterns of these cells are shown in Figure 

2(a). For the device doped with 2% Cu, weak diffraction peaks of the photoactive α-phase 

were observed, and the photo-inactive δ-phase was formed as observed at 2θ of 12.6°. On 

the other hand, sharp 100 diffraction peaks of the α-phase are observed for the cells doped 

with 2% Ge, 12.5% Ge, and 12.5% Cu, which indicates formation of the δ-phase was sup-

pressed, and the structure of α-phase was maintained. 

J-V characteristics of the devices are shown in Figure 2(b), and the photovoltaic pa-

rameters are listed in Table 1. For the device doped with 2% Ge, JSC, VOC and FF were 

higher than those of the Cu-doped devices. When Ge was added up to 12.5%, the α-phase 

was formed without δ-phase, indicating Ge can be a candidate as an alternative element 

to Pb. 
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Figure 2. (a) XRD patterns of present perovskite crystals. (b) J-V characteristics of present solar cells. 

Table 1. Photovoltaic parameters of present perovskite photovoltaic devices. JSC: short-circuit cur-

rent density. VOC: open-circuit voltage. FF: fill factor. η: conversion efficiency. 

Devices 
JSC 

(mA cm−2) 

VOC 

(V) 
FF 

η 

(%) 

FA0.83Cs0.17PbI3 19.3 0.815 0.496 7.74 

FA0.83Cs0.17Pb0.98Ge0.02I3 16.7 0.770 0.504 6.42 

FA0.83Cs0.17Pb0.875Ge0.125I3 13.1 0.747 0.422 4.13 

FA0.83Cs0.17Pb0.98Cu0.02I3 12.2 0.702 0.350 3.00 

FA0.83Cs0.17Pb0.875Cu0.125I3 0.583 0.0385 0.237 0.00532 

4. Conclusion 

In summary, the crystal structure and properties of Ge-doped FACs-based perov-

skite was characterized from first-principles calculations and experiments. The structural 

distortion for PbI6 octahedra was caused by the Ge doping, which decreased the displace-

ment of FA molecules, resulting in decrease of the kinetic energy. Suppression of for-

mation of δ-phase resulted in formation of α-phase. Band structure showed the charge 

transfer from Ge to I ions, which promoted carrier diffusion from I 5p to Ge 4p orbitals. 

The perovskite solar cells doped with 12.5% Ge also provided photovoltaic properties. 
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