Characterizing the biological behavior of Fe_3O_4 nanoparticles conjugated with acridine orange using in vitro co-culture systems relevant to skin, lung and gut barrier models

Sorina N. Voicu¹, Ionela C. Voinea¹, Adelina Niculescu², Dan Eduard Mihaiescu³, Alexandru Grumezescu^{2,4,5}, Miruna S. Stan^{1*}

1 Departament of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Romania

2 Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Romania

3 Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania

4 Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania

5 Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania

*Correspondence: miruna.stan@bio.unibuc.ro

The 4th International Electronic Conference ASEC on Applied Sciences 2023 10 November 2023 | Online

AIM. Fe₃O₄ nanoparticles (NPs) can be conjugated with acridine orange to create a hybrid nanomaterial with unique properties, such as the magnetic characteristics of magnetite and the fluorescence of acridine orange, making them useful for a variety of applications, including cell imaging, drug delivery, and magnetic separation. In this context, we aimed to provide a biological evaluation of this type of NPs using in vitro co-culture models of human skin, lungs, and intestine.

NANOPARTICLES. Fe₃O₄ NPs were obtained by the co-precipitation method from Fe²⁺ and Fe³⁺ (1:2 molar ratio). The concentration of acridine orange in an aqueous NH_4OH solution was 0.00025%. The washed several times with ultrapure product was water, redispersed, and centrifuged thrice at 6000 × g for 10 min. Each supernatant was collected, obtaining 3 different NPs suspensions.

Nanoparticles	Hydrodynamic size	Polydispersity index	Zeta potential
(dispersed in culture medium)	Z-average (d.nm)	(PdI)	(mV)
$Fe_3O_4 - 1^{st}$ suspension	98 ± 0,5	0,621 ± 0,006	-10,3 ± 0,51
$Fe_3O_4 - 2^{nd}$ suspension	351 ± 5,6	0,965 ± 0,009	-11,2 ± 0,70
$Fe_3O_4 - 3^{rd}$ suspension	38 ± 2,7	0,827 ± 0,110	-8,6 ± 0,11

RESULTS. We developed one model of skin barrier using a co-culture of human keratinocytes (HaCaT cell line) and dermal fibroblasts (CCD-1070Sk cell line), one model of intestinal barrier composed of human Caco-2 enterocytes and **HT-29-MTX** mucus-producing intestinal cells, and one model of **pulmonary** barrier made of **A549 epithelial cells** and MRC-5 fibroblasts.

Our results showed that none of the NP suspensions influenced the cell viability of the coculture systems, suggesting their good **biocompatibility** on short-term exposure (24) hours) according to the cytotoxicity assays performed.

In addition, we observed a specific cell orientation in the co-culture systems, being maintained after one-day exposure to the three suspensions of NPs.

ACKNOWLEDGEMENTS. This research was funded by UEFISCDI, grant no. PN-III-P1-1 1-TE-2021-1375 (81TE/2022).

CONCLUSION. Fe₃O₄ NPs conjugated with acridine orange could be promising hybrid nanomaterial with good biocompatibility and special properties for future applications in biomedicine.

skin co-culture

MRC-5/A549 pulmonary co-culture

Caco-2/HT-29-MTX intestinal co-culture

