The 4th International Electronic Conference on Applied Sciences, 27 Oct–10 Nov 2023

Catalytic potential and electrical properties of molybdenum and vanadium coordination complexes derived from acetic acid hydrazide

Jana Pisk,¹ Josipa Sarjanović,¹ Edi Topić,¹ Mirta Rubčić,¹ Luka Pavić²

¹Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, 10000

Zagreb, Croatia

²Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia jana.pisk@chem.pmf.hr

Introduction

The literature data flourishes with molvbdenum and vanadium compounds prepared by reactions of vanadium with different aroylhydrazones. Mo and V coordination complexes prepared from acylhydrazones are few in number. Many obtained transition metal complexes containing arovlhydrazone-based ligands showed good activity and were classified as efficient catalytic systems, especially in oxidation reactions, while the electrical/dielectric properties of transition metal coordination complexes are still a new research area. The aim of the presented research is to test the catalytic activity of the obtained Mo and V compounds for linalool oxidation. (Di)electric properties of V compounds were investigated in situ impedance spectroscopy method in a wide frequency and temperature range.

Synthetic pathway

Fig. 1. Apparatus used for the solution-bases synthesis

Crystal structures

Fig. 5. Conductivity spectra for [VO(L)(OMe)(MeOH)]

Catalytic testing

Table 1. Linalool oxidation with **V** catalyst and H₂O₂. *F=Furanoid, P=pyranoid

	[VO(L) (OEt) (H ₂ O)]	[VO(L) (OMe) (MeOH)]
Conversion (%)	24	22
Selectivity F (%)	26	57
Selectivity P (%)	12	23

Table 2. Linalool oxidation with **Mo**catalyst and H_2O_2 .*F=Furanoid, P=pyranoid

/ 1/		
	[MoO(L) (H ₂ O)]	[MoO(L) (MeOH)]
Conversion (%)	45	60
Selectivity F (%)	49	32
Selectivity P (%)	33	22

Conclusions

Prepared molybdenum and vanadium coordination complexes with acyl-hydrazone-based ligands show good catalytic properties for linalool oxidation, with H₂O₂ as an oxidant. Vanadium complexes can be used as semiconductors and that role will be further investigated.

Acknowledgments

This work is supported in a part by the bilateral Cro-Fr project Cogito, No. 49260RA.