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Abstract: Deep Learning (DL) has become increasingly popular in recent years, with researchers 

and businesses alike successfully applying it to a wide range of tasks. However, one challenge that 

DL faces in certain domains, such as Remote Sensing (RS), is the difficulty of creating large, well-

annotated training datasets. This is due to the high cost of acquiring and labeling RS data. This 

challenge significantly limits the development of DL in RS. RS data can come from multiple sources, 

such as satellites, airplanes, and drones, and use different sensor technol-ogies. Training DL models 

on data from one source may not produce the same accuracy on data from other sources, even if 

they cover the same region. Transfer learning (TL) can help to address this challenge by relaxing the 

requirement for large training datasets. Specifically, TL allows us to train a model on data from one 

source and then adapt it to data from another source, even with less training data. This makes TL a 

promising approach for solving both the problem of multisource adaptation and the problem of 

insufficient training data in the target domain. This paper evaluates the homogenous and heteroge-

neous TL approach that addresses model transfer across different domains. Transfer gain is meas-

ured through specific statistical metrics such as precision, kappa, recall, and F1-score, and a positive 

gain is empirically shown in the vast majority of cases. The proposed method is evaluated on the 

challenging task of Multispectral RS image (MSI) classification due to the complexity and variety of 

natural scenes. This work is examined in terms of its social, economic, and environmental conse-

quences. Additionally, potential future directions for research and the achievement of es-tablished 

goals are explored. 

Keywords: Transfer Learning, Heterogenous Learning, Homogenous Learning, Multispectral Re-
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1. Introduction 

Most machine learning (ML) methods employed nowadays assume that training and 

test data are from the same feature space and distribution [1]. This implies that when the 

data distribution changes, models trained from scratch with newly collected data are re-

quired. However, there are situations where obtaining new data for training new models 

can be financially or logistically challenging, particularly in environments where data col-

lection demands substantial computational power or financial resources. Hence, the abil-

ity to leverage existing knowledge becomes highly valuable, offering a means to circum-

vent the expensive endeavor of reconstructing a model from scratch and amassing suffi-

cient new data to create a dependable system. This is where the concept of transfer learn-

ing (TL) becomes indispensable. 

TL is a concept that allows information learned in one setting to be used in another, 

or at least part of it. This can improve the training process by avoiding the need to develop 
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new models from scratch and instead adapting previously built models to a new setting. 

TL has proven to be a powerful technique with successful results in many different envi-

ronments. However, there are several challenges that need to be considered before decid-

ing whether to use TL. 

The classification of multispectral remote sensing (RS) images (MSI) is a critical and 

important topic that has been extensively studied. It is essential for a variety of applica-

tions, including land cover mapping, vegetation monitoring, urban analysis, resource 

management, and decision-making. The complexity and variety of natural scenes pose 

significant challenges to MSI classification. This is due to the unique characteristics of RS 

data, such as spectral variability, spatial heterogeneity, and temporal dynamics. These 

characteristics make it difficult to distinguish between different land cover classes, and 

collecting data to train deep learning (DL) models can be expensive or even unfeasible. 

Therefore, using homogeneous and heterogeneous TL to reduce costs and labor time and 

enhance classification accuracies would be extremely useful. TL has shown promise in 

improving the performance of MSI classification. In recent years, a number of studies have 

used TL to achieve state-of-the-art results on a variety of MSI classification tasks. How-

ever, selecting the right source domain and task is essential for successful TL in RS. The 

performance of the target model is significantly influenced by the source model.  

The importance of selecting the right source dataset and task for TL (TL) in multi-

spectral RS image (MSI) classification for both homogeneous and heterogeneous TL was 

investigated using Sentinel-2 (S2) and Landsat-9 (L9) MSI imagery as heterogeneous do-

mains. Homogeneous TL was evaluated for S2 to S2 and L9 to L9, and heterogeneous TL 

was evaluated for S2 to L9 and L9 to S2. A variety of metrics were used for evaluation, 

including precision, kappa, recall, and F1-score. The results showed the importance of TL 

and suggested using homogeneous TL whenever possible. 

This paper is organized as follow. Section 2 delved into the fundamental concepts of 

TF, including domain and task definitions, and differentiate between homogeneous and 

heterogeneous TL. Section 3: Methodology outlines the meticulous data preparation pro-

cess, dataset details, and the architecture of our neural network models used in the exper-

iments. Section 4: Experiments is the heart of our paper, where we present the results and 

analyses of two distinct TF experiments: Homogeneous TL and Heterogeneous TL. This 

paper is conducted in Section 5. 

2. Deep Transfer Learning 

In TF, knowledge is transferred from one domain to another to improve the training 

process, either in terms of model performance or training speed. TF can be used to address 

the scarcity and cost of collecting training data. When discussing TF, it is necessary to 

define some concepts. According to [1], a domain D is defined as a collection of data with 

a shared feature space X and marginal probability distribution P(X), which can be repre-

sented as D = {X, P(X)}. Similarly, a task T is defined as a set of data with a shared target 

space Y and objective predictive model M, which can be represented as T = {Y, M}. TF can 

be defined as the process of reducing the cost of learning a predictive model in a target 

domain DT by leveraging knowledge from a source domain DS and a learning task TS, 

where the source and target domains may have different feature spaces X and/or target 

spaces Y. This leads to the definition of two fundamental types of TF: homogeneous and 

heterogeneous.  

2.1.A. Homogenous Transfer Learning 

Homogeneous (TL) is described as a situation where the feature spaces of data in 

both the source and target domains match precisely (XS = XT), the corresponding outcome 

spaces are identical (YS = YT), and the dimensions of these spaces are also equivalent (dS 

= dT). [4]. This alignment simplifies the task of transfer learning (TL), as it establishes a 

seamless match between the data attributes and the target objectives. When transitioning 
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knowledge from one domain to another, the transferred model simply requires speciali-

zation in tackling the particular task within the target domain. This process can be accom-

plished through fine-tuning the model, wherein the model is trained using data from the 

target domain while maintaining the weights acquired during training in the source do-

main. This is more efficient than randomly initializing and optimizing the model from 

scratch, as the model already has some knowledge from the previous task. Homogeneous 

(TF) has proven to be a successful technique in bolstering model performance and expe-

diting training. To illustrate, in reference [5], the authors show that knowledge transfer 

can be used to improve the performance of image classification on the ImageNet dataset 

[6]. 

2.2.B. Heterogenous Transfer Learning 

Heterogeneous (TL) is distinguished by the presence of dissimilar feature spaces 

and/or target spaces between the source and target domains, as depicted in (see Figure 1). 

In other words, XS≠XT and/or YS≠YT. This signifies that the domains may lack shared 

features, and the dimensions of these features may also differ. Therefore, heterogeneous 

TF is more challenging than homogeneous TF, as it necessitates bridging the gap between 

disparate features and their respective quantities. While knowledge transfer remains a 

possibility in heterogeneous TF, it becomes more challenging due to the need to translate 

valuable information originally represented in terms of the source domain into an appro-

priate format for the target domain. Heterogeneous TF is not always possible or advisable, 

as it can be more difficult to implement and may not lead to the same performance im-

provements as homogeneous TF.  

When the domains, features, or tasks exhibit substantial dissimilarity, a phenomenon 

known as negative transfer learning (TL) can occur. Negative TL arises when the process 

of transferring knowledge from the source domain to the target domain has an adverse 

impact on the model's performance within the target domain. In such cases, it is often 

more prudent to opt for training a model from the ground up, utilizing advanced tech-

niques like data augmentation, active/meta learning, and others, rather than attempting 

to transfer a model from the source domain. The different types of TL methods can be 

distinguished based on their feature space, the difference between the domains, and the 

tasks that the predictive models are intended to perform.  

 

Figure 1. Comparing surface reflectance values from S2 and L9 data over the same geo-

graphic area. Common bands such as Blue, Green, Red, NIR, SWIR-1, and SWIR-2 are 

typically selected in both domains. This uniform band selection ensures that the spectral 
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information used for comparison is consistent across different data sources. In all plots, x-

axis represents the L9 values, and y-axis is the S2 values. 

 

3. Methodology 

3.1 Source and Target Data Preparation 

The first step in TL is to pre-process the data and create the appropriate training and 

validating splits. S2 and L9 imageries are downloaded and saved. Then, only the bands 

(features) that are considered most relevant to the task are kept. These features, which are 

briefly described in Table 1, are the same for both domains. Once the final datasets are 

created, they are split into training and test subsets. A 70:30 data split is used, meaning 

that 70% of the data samples are used for training and 30% are used for testing. Finally, 

the training and test sets are scaled. At this point, the data is fully processed and the train-

ing and test datasets can be used to train and validate the predictive models. The entire 

data processing stage is performed on both the source and target domain data inde-

pendently. 

Table 1. Selected MSI Bands. 

 

  Sentinel-2 

 
Band Resolution        CV 

      (m)               (nm) 

Landsat-9 

 
Band Resolution        CV 

      (m)               (nm) 

Blue       10m         490nm     30m            452nm 

Green      10m         560nm     30m            561nm 

Red      10m         665nm     30m            665nm 

NIR      10m         842nm     30m            865nm 

SWIR1      20m         1610nm     30m            1609nm 

SWIR2      20m         2190nm     30m            2200nm 

As discussed in [8,16,20], the key to achieving successful TL and avoiding negative 

effects is to discover and exploit shared underlying structures between DS (X; Y) and DT 

(X; Y).  

  

3.2 Dataset Description 

Our dataset comprises two subsets derived from satellite images acquired by S2 and 

L9, encompassing seven spectral bands (blue, green, red, near-infrared, shortwave infra-

red 1, shortwave infrared 2), along with calculated indices: NDVI (Normalized Difference 

Vegetation Index) and NDWI (Normalized Difference Water Index). 

The S2 data was collected in 2023 using a single raster image, along with a cloud 

mask to detect and mask cloudy areas. In contrast, the L9 data was gathered over three 

years, from 2021 to 2023, using a series of five raster images, and it also incorporates a 

cloud mask for the identification and exclusion of cloudy regions. Each subset contains 

three CSV files, each with 10,000 samples, resulting in a total of 30,000 samples. The first 

file focuses on distinguishing olive-bearing land from other land types, featuring two clas-

ses: Olive and Non-Olive. The second file targets the differentiation between palm vege-

tation and other land cover types, comprising Palm and Non-Palm classes. Lastly, the 

third file aims to detect the presence of buildings within land sections, with classes labeled 

as Building and Non-Building. This dataset offers a valuable resource for land classifica-

tion tasks, including land cover mapping, urban planning, and agriculture monitoring, 

harnessing the richness of spectral bands and computed indices to facilitate accurate and 

efficient land feature classification in various applications.  
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Figure 2. Convolutional Neural-network model architecture. (Find the datasets and the code used 

in this study on the GitHub repository: https://github.com/mrouba/TL_RS). 

3.3 Model Training 

 

After processing the data samples and constructing train and test datasets for both 

the source and target domains, the next step involves the creation and training of a neural 

network specifically designed for the source domain. However, to gain a comprehensive 

understanding of how the proposed solution operates, it is necessary to explain the neural 

network architectures selected to accomplish this task. 

3.4 Neural Network Architectures 

1D Convolutional Neural Networks (CNNs) is used here as shown in Figure 2. It 

consists of two consecutive 1D convolutional layers, followed by one Dropout and one 

MaxPooling layers, then, features are flattened to be injected in classical classifiers; Mul-

tiple Layer Perceptron (MLP). 

 

3.5 Source model training process 

CNN weights are randomly initialized via Xavier initialization [18]. All layers use 

rectified linear unit (Relu) as the activation function and Adam [19] as the optimizer with 

learning rate 0.001. Training was run for 100 epochs with batch size of 32.  

 

3.6 Target model training (Fine-tuning) 

TL idea is based on the conclusions discussed in [5], which state that neural networks 

have a tendency to acquire more general features in their initial layers and progressively 

more specific features in the later layers of their architecture. Consequently, even when 

the features received by the network differ, as long as there is a sufficient degree of simi-

larity between the source domain (DS) and the target domain (DT), the neural network 

should have the capacity to adapt and leverage this shared information to successfully 

perform the assigned task. It is generally not advisable to remove and randomly initialize 

the weights of the input layer when aiming to maximize the transfer of information across 

domains. 

The information contained in the first layer of a neural network can be pivotal for the 

effective functioning of subsequent layers. Altering or removing this information may 

lead to a significant decrease in the network's performance. In TL, the final classification 

layer of a pretrained CNN (SoftMax) is reconfigured to meet the new classification task, 

and the remaining layers are frozen during training and later used as feature extractors. 

However, the last two layers are unfrozen and trained to learn the new classification task. 

Once the TL is performed and the transferred model is capable of processing the input 

features of the target domain, the performance of the transferred model is evaluated. To 

do this, an exact copy of the transferred model is created, but with reinitialized weights. 

This allows the results obtained by the transferred model to be compared to the results 

that a model with the same architecture trained from scratch would produce. 
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4.Experiements  

This project has been developed using Python and TensorFlow as the DL framework. 

The developed solution was coded in Jupyter notebook, and executed with CPU Intel Core 

i7-9700k with 16GB of RAM and GPU NVIDIA 1080-Ti. 

4.1. MSI Homogenous TF  

Sentinel-2A and Landsat-9 data were leveraged as the target and source domains to 

enhance the model's capabilities for classifying olive trees. First, a model was trained on 

Sentinel-2A and Landsat-9 data with a palm classification task. This foundational training 

enabled the model to grasp the intricacies of identifying palm trees in satellite imagery. 

Then, the model was fine-tuned on Sentinel-2A and Landsat-9 data with an olive classifi-

cation task. Fine-tuning the model with data from a source domain with remarkable sim-

ilarity to the target domain was found to be strategic. By employing a source domain that 

mirrored the characteristics of the target domain, the fine-tuning process was highly ef-

fective, enabling the model to adapt quickly to the nuances of the olive classification task 

and resulting in a substantial boost in accuracy. 

Impressive accuracy was achieved when our model for olive tree classification was 

fine-tuned using a source model trained for building classification. This experiment 

broadened our perspective on the capabilities of machine learning models by showing 

that the traditional boundaries between source and target tasks can sometimes be more 

fluid than expected. This prompted us to rethink our preconceived notions about domain 

dissimilarity in machine learning. The ability of our model to fine-tune effectively sug-

gests that there may be latent similarities or transferable knowledge across seemingly dis-

tinct domains. 

Table 3. Performance Metrics for Homogeneous Transfer Learning from Different Tasks Using 

Landsat-9 /Sentinel-2A Data. 

 
   Landsat-9 

Accuracy  Precision  Recall  F1-Score 
         Sentinel-2 
    Accuracy  Precision  Recall  F1-Score 

TF (Palme -> Olive)     0.98    0.98    0.98    0.98      0.95    0.95    0.95    0.95  

TF (Buildings -> Olive)      0.96    0.96    0.96    0.96      0.85    0.88    0.85    0.84  

 

The distribution of the three classes (olive, building, and palm) in Sentinel and Land-

sat data was visualized using t-SNE plots in Figures 3 and 4, which condensed the multi-

dimensional information into a clear two-dimensional representation. This revealed how 

the classes were distributed and related. The olive class was notably positioned in close 

proximity to the building and palm classes, suggesting that it shares certain common fea-

tures or characteristics with the other two classes. 
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Figure 3: t-SNE Visualization for the frequency vectors of S2 on right side and L9 dataset on the left 

Reveals Olive in Gray, Palm in Blue, and Building in Red 

4.2 MSI Heterogenous TF  

A model for olive tree classification was fine-tuned on S2 data using a building/palm 

task classification model trained on S2 images as the source model. The goal was to create 

a robust model capable of accurately identifying olive trees in L9 data. However, the dis-

similarity between the two domains (L9 for target model and S2 for source model) posed 

a significant challenge. Even though bands that were shared between the two domains 

were carefully selected, they exhibited a low correlation, making it difficult for the model 

to generalize effectively. 

We undertook the task of resampling L9 data to match the spatial resolution of S2, 

which is 10 meters. It's worth noting that L9 originally possessed a spatial resolution of 30 

meters. The resampling procedure involved the utilization of cubic resampling tech-

niques, and the outcomes were truly noteworthy. The resampled dataset exhibited a re-

markable enhancement in classification accuracy when compared to the original data. 

This discovery underscores the critical significance of carefully selecting appropriate spa-

tial resolution images for RS applications, given their profound influence on the perfor-

mance and adaptability of machine learning models. 

 

Table 4. Performance Metrics for HTL from Different Tasks using L9 /S2 Data.  

 
   Sentinel to Landsat-9 

Accuracy  Precision  Recall  F1-Score 
         Landsat-9 to Sentinel-2 
    Accuracy  Precision  Recall  F1-Score 

TF (Palme -> Olive)     0.50    0.25    0.50    0.33      0.67    0.80    0.67    0.63  

TF (Buildings -> Olive)     0.50    0.25    0.50    0.33      0.86    0.89    0.86    0.86  

Figure 4: t-SNE Visualization for the frequency vectors of L9 and S2 data; S2 in Blue, and L9 in 

Red.  

Table 5. Performance Metrics for HTL from Different Tasks using L9 (resampled) /S2 Data.  

 
   Sentinel to Landsat-9 

Accuracy  Precision  Recall  F1-Score 
         Landsat-9 to Sentinel-2 
    Accuracy  Precision  Recall  F1-Score 

TF (Palme -> Olive)     0.51    0.69    0.51    0.35      0.97    0.98    0.97    0.97  

TF (Buildings -> Olive)     0.50    0.25    0.50    0.33      0.86    0.89    0.89    0.85  

 

According to Table 4, the utilization of L9 imageries as the source domain for fine-

tuning on S2 data as the target domain yields notably strong performance. This remarka-

ble outcome can be primarily attributed to the quality of the L9 data. The high quality of 
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the source data significantly contributes to the effectiveness of TL process, providing a 

solid foundation for the model's adaptation to the target domain.   

Table 5 reveals the considerable improvements resulting from the resampling of L9 

data to match the spatial resolution of S2 data in the realm of HTL. Accuracy, precision, 

recall, and F1-Score metrics emphasize the substantial impact of spatial resolution align-

ment on model performance.   

The quality of L9 data is a critical factor influencing the success of fine-tuning in the 

context of HTL. This observation holds true for both Table 4 and Table 5. When L9 data 

exhibits higher quality compared to S2, it significantly contributes to the effectiveness of 

TL process. This underscores the importance of having high-quality source data, as it pro-

vides a solid foundation for the model's adaptation to the target domain. Additionally, 

considering spatial resolution alignment, as demonstrated in Table 5, plays a vital role in 

enhancing model performance. Therefore, ensuring high-quality source data and 

thoughtful consideration of resolution are paramount for achieving superior performance 

in such transfer learning scenarios.  

5. Conclusion  

This study explores the concept of TL, emphasizing its vital role in domain and task 

considerations. It categorizes knowledge transfer into two forms: homogeneous and het-

erogeneous TL, illustrating how source-target domain similarities impact transfer effec-

tiveness. Using S2 and L9 data, we explore these TL scenarios, highlighting the im-

portance of task and source data choice for efficient transfer. Our work underscores the 

need for thoughtful domain and task selection to optimize TL outcomes. Additionally, 

our findings reveal the complexity of domain adaptation, showing that the reverse ap-

proach doesn't guarantee success. This is influenced by domain nuances, dataset charac-

teristics, and model adaptability. Our study emphasizes the importance of strategic do-

main selection for effective TL. 

 

6. Declaration of Competing Interest 

 

This study explores the concept of Transfer Learning (TL), emphasizing its vital role 

in domain and task considerations. It categorizes knowledge transfer into two forms: ho-

mogeneous and heterogeneous TL, illustrating how source-target domains similarities 

impact TL effectiveness. Using S2 and L9 data, we explore these TL scenarios, highlighting 

the importance of task and source data choice for efficient TL. Our work underscores the 

need for thoughtful domain and task selection to optimize TL outcomes. Additionally, 

our findings reveal the complexity of domain adaptation, showing that the reverse ap-

proach doesn't guarantee success. This is influenced by domain nuances, dataset charac-

teristics, and model adaptability. Our study emphasizes the importance of strategic do-

main selection for effective TL. 

References 

1. Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning.” In: IEEE Transactions on knowledge and data engineering 22.10 (2009), pp. 
1345–1359. 

2. Alhammadi, M. S., et E. P. Glenn. « Detecting Date Palm Trees Health and Vegetation Greenness Change on the Eastern Coast of the United 
Arab Emirates Using SAVI ». International Journal of Remote Sensing 29, no 6 (mars 2008): 1745‑65. https://doi.org/10.1080/01431160701395195. 

3. Huang, Yixiang, Zhaoqing Wang, Xin Jiang, Ming Wu, Chuang Zhang, et Jun Guo. « Pointshift: Point-Wise Shift MLP for Pixel-Level Cloud 
Type Classification in Meteorological Satellite Imagery ». In IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Sympo-
sium, 607‑10. Kuala Lumpur, Malaysia: IEEE, 2022. https://doi.org/10.1109/IGARSS46834.2022.9883178. 

4. Oscar Day and Taghi M Khoshgoftaar. “A survey on heterogeneous transfer learning.” In: Journal of Big Data 4.1 (2017), pp. 1–42. 

5. Jason Yosinski et al. “How transferable are features in deep neural networks?” In: arXiv preprint arXiv:1411.1792 (2014).  

6. Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge.” In: International Journal of Computer Vision (IJCV) 115.3 (2015), 
pp. 211–252. DOI: 10.1007/s11263-015-0816-y.Kussul, Nataliia, Mykola Lavreniuk, Sergii Skakun, et Andrii Shelestov. « Deep Learning Classi-

fication of Land Cover and Crop Types Using Remote Sensing Data ». IEEE Geoscience and Remote Sensing Letters 14, no 5 (mai 2017): 778‑82. 
https://doi.org/10.1109/LGRS.2017.2681128. 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 9 of 9 
 

 

7. Zirui Wang et al. “Characterizing and avoiding negative transfer.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. 2019, pp. 11293–11302. 

8. Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In International Conference on Machine Learning, pages 
1180–1189, 2015 

9. « Pires de Lima et Marfurt - 2019 - Convolutional Neural Network for Remote-Sensing Sc.pdf », s. d. 

10. Pires de Lima, Rafael, et Kurt Marfurt. « Convolutional Neural Network for Remote-Sensing Scene Classification: Transfer Learning Analysis 
». Remote Sensing 12, no 1 (25 décembre 2019): 86. https://doi.org/10.3390/rs12010086. 

11. Vulova, Stenka, Alby Duarte Rocha, Fred Meier, Hamideh Nouri, Christian Schulz, et Birgit Kleinschmit. « Modeling Urban Evapotranspiration 
with Sentinel-2, Open Geodata, and Machine Learning in Summertime ». In IGARSS 2022 - 2022 IEEE International Geoscience and Remote 

Sensing Symposium, 7697‑7700. Kuala Lumpur, Malaysia: IEEE, 2022. https://doi.org/10.1109/IGARSS46834.2022.9884064. 

12. Wang, Anna X., Caelin Tran, Nikhil Desai, David Lobell, et Stefano Ermon. « Deep Transfer Learning for Crop Yield Prediction with Remote 
Sensing Data ». In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, 1‑5. Menlo Park and San Jose CA 
USA: ACM, 2018. https://doi.org/10.1145/3209811.3212707. 

13. « Wang et al. - 2018 - Deep Transfer Learning for Crop Yield Prediction w.pdf », s. d. 

14. « Xie et al. - 2016 - Transfer Learning from Deep Features for Remote Se.pdf », s. d. 

15. Xie, Michael, Neal Jean, Marshall Burke, David Lobell, et Stefano Ermon. « Transfer Learning from Deep Features for Remote Sensing and 
Poverty Mapping ». Proceedings of the AAAI Conference on Artificial Intelligence 30, no 1 (5 mars 2016). https://doi.org/10.1609/aaai.v30i1.9906. 

16. M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with deep adaptation networks. In Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning, 2015. 

17. Zhao, Huizhen, Fuxian Liu, Han Zhang, et Zhibing Liang. « Convolutional Neural Network Based Heterogeneous Transfer Learning for Re-
mote-Sensing Scene Classification ». International Journal of Remote Sensing 40, no 22 (17 novembre 2019): 8506‑27. 

https://doi.org/10.1080/01431161.2019.1615652. 

18. Xavier Glorot and Yoshua Bengio. “Understanding the diffculty of training deep feedforward neural networks.” In: Proceedings of the thir-
teenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings. 2010, pp. 249–256. 

19. Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization.” In: arXiv preprint arXiv:1412.6980 (2014). 

20. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In Computer Vision and Pattern Recognition 
(CVPR), volume 1, page 4, 2017 
 

 


