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Abstract: This article introduces the Differential Entropy-based Compactness Index (DECI), a new 10 

metric for synthetically describing the spatial distribution of point clouds. DECI is founded on the 11 

differential entropy (DE) of point clouds and if they depict a moving object distribution, the index 12 

enables real-time monitoring. Historical data analysis allows studying DECI trends and average 13 

values in defined intervals. Multiple practical applications are suggested, including risk assessment, 14 

congestion measurement, traffic control (including autonomous systems), infrastructure planning, 15 

crowd density, and health analysis. DECI's real-time and historical insights are valuable for deci- 16 

sion-making, system optimization, and hold potential as a feature in Machine Learning applications.  17 

Keywords: point clouds; 3D geometry distribution assessment; compactness index; differential en- 18 

tropy; risk assessment; real-time; 19 

 20 

1. Introduction 21 

1.1. Point Clouds 22 

Point clouds serve as a potent representation tool for three-dimensional (3D) geom- 23 

etry, finding applications across a diverse spectrum of industries. This technique hinges 24 

upon a collection of points in the 3D space, capturing intricate details of object surfaces 25 

and their spatial arrangement. The acquisition of requisite data to construct point clouds 26 

can be achieved through a range of methodologies, encompassing advanced 3D scanners 27 

[1,2], laser scanners [3,4], as well as techniques like tomography [5] and photogrammetry 28 

[6]. Point clouds are commonly generated using 3D scanners to capture intricate details 29 

of physical objects and environments, making them valuable in in fields like industrial 30 

design, architecture, medicine, and digital art. They can also be created from 3D CAD 31 

models, allowing for assessment of virtual designs. Point clouds extend beyond repre- 32 

senting objects and find utility in broader contexts, such as transportation systems, where 33 

the possibility to consider the vehicles as points, could help to optimize traffic flow and 34 

routes. 35 

1.2. Litterary review 36 

Several methodologies have been devised to articulate point clouds and thereby ex- 37 

tract substantial insights. These methodologies encompass density-based [7] and shape- 38 

based [8,9] approaches, each tailored towards encapsulating specific facets of point spatial 39 

distribution. Within the gamut of density-based approaches, the employment of density 40 

histograms [10] emerges to measure the concentration of points within distinct spatial 41 

realms. This method furnishes a valuable tool in detecting point clusters or regions of el- 42 

evated density within the point cloud. Furthermore, delving into the shape of the point 43 
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cloud entails the extraction of geometric attributes, encompassing ellipticity, angular ap- 1 

erture, and analogous measures associated with point morphology. This genre of ap- 2 

proach finds applicability in elucidating point clouds that delineate objects of distinct con- 3 

figurations. Point clouds analysis with entropy, specifically with differential entropy (DE) 4 

[11–13], offers a unique perspective on characterizing their spatial distribution and com- 5 

plexity. Entropy in point clouds measures the uncertainty or randomness in the arrange- 6 

ment of points in 3D space, aiding in assessing information, regularity, or disorder in the 7 

data. DE analyzes each point's entropy individually, offering a detailed view of their con- 8 

tribution to spatial complexity. Studying point clouds through DE allows for a nuanced 9 

understanding, enhancing context-aware analyses across diverse applications and re- 10 

search domains. 11 

1.3. Aim of the work 12 

This work aims to introduce the “Differential Entropy-based Compactness Index” 13 

(DECI), as an innovative metric, and its potential applications. The index not only deline- 14 

ates the spatial distribution of points but also furnishes a novel lens through which to 15 

appraise risk, congestion, and the structural aspects within point clouds. Applications 16 

span from controlling maritime, aerial, and road traffic (inclusive of autonomous driving) 17 

to scrutinizing crowd density in public and indoor spaces, thus finding an amenable en- 18 

vironment within the proposed framework. DECI also exhibits versatility across domains 19 

like health, biology, and sports analysis, generating a broad spectrum of possible utility. 20 

2. Materials and Methods 21 

2.1. Differential Entropy 22 

In the context of point clouds, denoted as 𝑃, comprising a collection of points (pn), 23 

the total DE (𝐻) for a multivariate normal distribution is defined as the summation of 24 

individual differential entropies (hi) associated with each point (pn). It is also useful to use 25 

the average value (𝐻) of the total DE, by dividing 𝐻 by the total number of points (n). 26 

This computation is expressed by the formula [14]: 27 

ℎ𝑖(𝑝𝑘) =
1

2
𝑙𝑛[(2𝜋𝑒)𝑁|∑(𝑝𝑘)|] (1) 

Here, N represents the dimensionality of the data, and ∑(𝑝𝑘) denotes the sample 28 

covariance matrix related to the k points 𝑝𝑘 within the neighborhood (ρ). To simplify the 29 

methodology, N=2 is considered (points on a plane). Consequently, 𝐻 is given by: 30 

𝐻(𝑃) =
∑ ℎ𝑖(𝑝𝑘)𝑛

1

𝑛
 (2) 

The aforementioned sample, from which the covariance matrix is derived, comprises 31 

the points contained within ρ of each pn. ρ is considered circular, centered at each point 32 

with a radius r. Depending on the k value within each ρ, three distinct scenarios arise: 33 

1. If k ≥ 3, the generalized variance is positive. 34 

2. If k = 2, the determinant is null, rendering the use of multivariate differential entropy 35 

as a measure of disorder unfeasible. In this case, the system can be described as uni- 36 

variate, with the index of dispersion represented by the variance along an axis pass- 37 

ing between the two points. 38 

3. If k = 1, the variance is null, and the entropy itself is null, as there is only one element 39 

in the neighborhood. 40 

Given these considerations, in the case of a planar distribution, the differential en- 41 

tropy can be expressed as: 42 

1. 𝑘 = 1 → ℎ𝑖 =  0 (3) 

2. 𝑘 = 2 → ℎ𝑖 =
1

2
𝑙𝑛 [(2𝜋𝑒)2 (𝜎𝑥 + 𝜎𝑦)

2
+ 1] 

(4) 
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3. 𝑘 ≥ 3 → ℎ𝑖 =  
1

2
𝑙𝑛[(2𝜋𝑒)2 |∑(𝑝𝑘)| + 1] 

(5) 

As it can be seen in the previous formulas, authors suggest these modifications to the 1 

DE formulas. In eq. 4, the determinant of the covariance matrix is replaced by the square 2 

of the sum of the x variance (σx) and y variance (σy) of the k points, the DE, as defined, 3 

remains invariant to both rotation and translation. To ensure hi remains positive, the au- 4 

thors added a constant value of 1 to the argument of the logarithm. The addition of the 5 

term 1 to the formula will be better discussed at the end of the next paragraph. 6 

2.2. DECI 7 

In seeking an index that attains a value of zero when the point set distribution is 8 

adequately sparse and progressively increases as the points draw closer to each other, the 9 

authors have defined DECI as follows: 10 

𝐷𝐸𝐶𝐼(𝑃) =
∑ 𝑑𝑒𝑐𝑖𝑖(𝑝𝑘)𝑛

1

𝑛
 (6) 

Where: 11 

𝑑𝑒𝑐𝑖𝑖(𝑝𝑘) = {

0              𝑖𝑓    ℎ𝑖(𝑝𝑘) = 0
1

ℎ𝑖(𝑝𝑘)
        𝑖𝑓    ℎ𝑖(𝑝𝑘) ≠ 0

 (7) 

Thus, in accordance with the concepts of ℎ𝑖  and 𝐻 for a point set distribution, a 12 

global compactness value (DECI) is derived in a manner that is proportionate to the sum 13 

of individual values (deci) associated with each point. The authors' decision to introduce 14 

the constant value of 1 into the formula guarantees that the argument of the logarithm is 15 

consistently greater than one, ensuring that hi remains positive or, at least, zero.  16 

This adjustment is particularly crucial in light of the potential applications of the pro- 17 

posed index (DECI). Indeed, when contemplating applications, especially within the 18 

realm of congestion and risk associated with transportation systems, it becomes impera- 19 

tive to maintain the DECI with a positive value. This design ensures that DECI remains at 20 

zero in the absence of risk and consistently increases as the level of risk escalates. 21 

2.3. Experiments 22 

To show DECI's characteristics and potential, tests were performed on random 2D 23 

point clouds. We examined how DECI behaves with changing distributions and varying 24 

r. The experiments focused on a random distribution called D1, comprising 100 points 25 

within a box defined by lower limits of 0 and upper limits of 500 on both the X and Y axes. 26 

DECI was calculated using different r for each point (r values: 10, 20, 30, 40, 50, 60, 70).  27 

In another scenario, each point was assigned an r between 0 and 50, with no specific 28 

measurement units. It's important to note that these units correspond to physical lengths. 29 

While a broader search radius, theoretically infinite, can describe the entire point dis- 30 

tribution, it's more relevant in transportation systems to identify points (representing ve- 31 

hicles, ships, aircraft, drones, etc.) clustering in specific areas. Such aggregations may in- 32 

dicate potential congestion and/or hazards. 33 

3. Results 34 

D1 was examined with a uniform r assigned to each point. Figure 1 (a) illustrates the 35 

deci values for each point and the resulting DECI value for the distribution when using a 36 

r equal to 10. Figure 1 (b) focuses on a specific region within the same case, providing 37 

insight into how deci functions. It is evident that isolated points (those without any other 38 

points in their vicinity) have deci values of 0. Additionally, in the case of the two pairs of 39 

points nearest to each other, deci is higher for the upper pair compared to the lower one.  40 

It should be noted that the color of the circles is not related to the deci, but is chosen 41 

randomly to better distinguish the various ρ. 42 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 4 of 6 
 

 

  

(a) (b) 

 Figure 1. (a) deci plot of D1 with a fixed radius whose value is 10; (b) A detail of a specific area. 1 

Figure 2 displays two examples of D1 with different search radius values. It is possi- 2 

ble to see DECI increasing. 3 

  

(a) (b) 

Figure 2. (a) deci values of D1 with search radius 20; (b) deci values of D1 with search radius 30. 4 

Figure 3 depicts a specific area of the above figures as example. The figure illustrates 5 

how the deci values vary for each point as the radius changes. 6 

  

(a) (b) 

Figure 3. (a) Detail of D1 with search radius 20; (b) Detail of D1 with search radius 30. 7 

An analysis of the point clouds was also conducted using the original differential 8 

entropy formulas in order to compare the proposed method with the existing one. Table 9 

1 displays the values of DECI and 𝐻 for D1 as the radius changes and their trend is shown 10 

in Figure 4 (a). It also includes the DECI value related to the entire distribution (with an 11 

infinite r, as mentioned earlier) for comparison.  12 

Table 1. Values of DECI and �̅� calculated for D1 as the r changing. 13 

Radius 10 20 30 40 50 60 70 +Inf 

DECI 0.0397 0.0961 0.1140 0.1162 0.1139 0.1086 0.1087 0.0788 

�̅� 39.2756 248.7611 204.9992 207.1805 244.8835 134.2913 152.7676 12.6881 

 14 

An example of D1 with variable radius is shown in Figure 4 (b). 15 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 5 of 6 
 

 

 

 

(a) (b) 

Figure 4. (a) Comparison between DECI and �̅�; (b) deci plot of D1 with variable r and related DECI’s 1 
value.  2 

4. Discussion 3 

Observing Table 1, it can be noted that, as the r increases, DECI exhibits an initially 4 

rising and subsequently falling trend. Specifically, with a r equal to 0, deci values are, by 5 

definition, all set to zero, resulting in a null DECI. Conversely, with a theoretically infinite 6 

search radius, DECI tends to describe the entire point cloud, yielding identical deci values 7 

for all points. Looking at the 𝐻 results, the trend is unstable. In fact, sudden increases and 8 

decreases are noted with an absolute minimum when the r is infinite. On the contrary, the 9 

DECI trend appears to be more stable and coherent. As the search radius expands, the 10 

influence of point-to-point interactions on deci values becomes apparent, as depicted in 11 

Figure 2 and Figure 3. Using different search radii for individual points, as shown in Fig- 12 

ure 4 (b) , is highly important in specific practical applications of this method. Whether a 13 

point represents a mode of transportation or a generic entity, it has inherent properties 14 

reflecting real-world attributes. Tailoring the search radius for each point can mirror a 15 

physical characteristic, like speed or size, affecting its interactions with other points. For 16 

example, in the context of ships at sea, the search radius might depend on factors like ship 17 

size and speed. Larger and faster ships could pose a greater risk of interaction due to their 18 

unique attributes. Similarly, analyzing a football team's evolution during a match and its 19 

impact on the game's outcome can be explored by studying changes in DECI. 20 

5. Conclusions 21 

In this study, the DECI index for point cloud description has been introduced. It has 22 

been demonstrated that it could primarily serve as a risk or congestion index in the field 23 

of transportation. The influence of a different radius for each point is considered essential, 24 

as the points may represent a system's schematic, and each system possesses certain phys- 25 

ical properties that can be reflected through the search radius. Beyond the transportation 26 

and logistics domain, entropy-based analyses and the DECI index could find applications 27 

in the medical field (for tracking the position and movement of specific cell groups), ma- 28 

terials science (for analyzing the distribution and size of defects), and human (crowd dy- 29 

namics and sports) and animals behavior analysis. Real-time analysis is also possible, as 30 

well as the evaluation of DECI trends over time. 31 
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