Simplified configuration of fiber-optic Brillouin observation using tunable reflectivity mirror Haruki Sasage¹, Yosuke Mizuno², and Heeyoung Lee¹

¹Shibaura Institute of Technology, ²Yokohama National University

- . Background and purpose
- **Optical fiber sensors**

Increasing demand for "health monitoring" of civil infrastructures for human safety

Features of optical fibers, such as small diameter, light weight, high flexibility, and resistance to electromagnetic interference

Strain

Distributed strain and temperature sensing based on Brillouin scattering

> Ability to measure **magnitude** and **position** of strain and/or temperature change along sensing fiber

Length of sensing fiber : ~ 5 m

Injected optical power : ~ 20 dBm

Conditions :

- Observation of BGS when the reflectivity is (1)between -7 dB to -17 dB.
- Investigation of reflectivity dependence of BGS height (2)when reflectivity is between -2 dB to -20 dB.

Experimental result

Observed BGS dependence on mirror reflectivity (1)

555

Temperature

BFS linearly depends on applied strain and temperature

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, California, 1995).

BOCDR

LD: laser diode, EDFA: erbium-doped fiber amplifier, **PD**: photo detector, **ESA**: electrical spectrum analyzer

Above is a widely used experimental setup for spontaneous Brillouin scattering observation. The Fresnel reflection at the open end of the FUT is suppressed, and independent reference optical path is used for self-heterodyne detection.

Efforts have been made to simplify and reduce the cost of this spontaneous Brillouin observation system.

Purpose

Development of Brillouin observation system that **eliminates** the independent reference light path and installs a TRM at the open end of the sensing fiber to control the power of the Fresnel reflected light, and thus maximize the SNR of the BGS.

3. Conclusion

We developed a simplified Brillouin observation system that eliminates the need for an independent reference path by incorporating a tunable reflectivity mirror at the open end of the sensing fiber.

At a reflectivity of -9 dBm the SNR was approximately double that of the -14 dB Fresnel reflection.