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Abstract: This paper presents a model of a cone using reinforcement learning, harnessing the self-

learning capacity of Artificial Intelligence to improve process efficiency. The independent operation 

of the cone is achieved through a reward and punishment system based on approaching or reaching 

the goal. The cone must decide between 0º or 90º turns at each step to maximize long-term rewards. 

While the simulated robotic safety cones successfully reach their targets, the training process is time-

consuming due to the numerous variables involved. Nonetheless, the rise of AI and its self-learning 

capabilities offer promising opportunities for process optimization. 
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1. Introduction 

The significance of transportation, particularly in the context of road maintenance 

and construction, cannot be overstated [1]. Despite the evident advantages of automation, 

this industry has been slow to adopt modernized tools and procedures [2]. Embracing 

automation in road construction can yield numerous benefits, including enhanced effi-

ciency, reduced physical strain on workers, shortened construction timelines, and mini-

mized economic losses. In the road construction setting, traffic cones play a pivotal role in 

delineating work zones. Traditionally, these cones are manually placed and relocated as 

the project progresses [3]. However, by introducing automation, this process can be sig-

nificantly expedited, thereby enabling workers to focus on more intricate tasks. Conven-

tional robotic systems often require an operator to control their actions, thereby limiting 

the potential efficiency gains [4]. To overcome this limitation, we propose a solution cen-

tered around an autonomous robot capable of independently reaching the desired posi-

tion through the utilization of reinforcement learning techniques. 

The power of Reinforcement Learning (RL) has been exemplified through various 

instances in the field of control and robotics, as demonstrated in [5]. These examples en-

compass a broad range of applications, including a two-armed robot mastering the art of 

juggling, a mobile robot efficiently pushing boxes over extended periods, and the coordi-

nated collection and transportation of disks by multiple robots to predetermined destina-

tions. Despite the numerous advantages offered by RL, the authors acknowledge the chal-

lenges associated with its design, primarily due to its reliance on a trial-and-error ap-

proach. To facilitate the development of future works, the authors propose several ideas. 

These include decomposing complex problems into smaller, more manageable subprob-

lems, and providing continuous reward signals to the RL agent to enhance feedback and 

learning efficiency. 

The paper [6] provides a comprehensive analysis of the application of Deep Rein-

forcement Learning (DRL) in mobile robot navigation between 2016 and 2021. The review 

highlights the limitations of traditional methods in handling unknown or dynamic 
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environments and emphasizes how RL can address these challenges. Notably, RL's ad-

vantages, including its reduced reliance on sensor accuracy, self-learning capabilities, and 

real-time recalculations, are discussed. The authors' paper also presents specific points 

that are relevant to the design of the state space model in mobile robot navigation. These 

include the representation of the starting and target points using the current and destina-

tion coordinates of the mobile robot. Furthermore, the use of simplified 2D models is fa-

vored over complex 3D models due to their simplicity, which aligns with the implemen-

tation choices made in this project. 

For the development of current work, the following specific objectives have been de-

fined: 

• Construction of a dynamic-kinematic model for a robotic safety cone. 

• Establishment of a suitable agent according to type of spaces for action and observa-

tion and the requirement of neural networks. 

• Development of a reward function that allows achieving good results during the 

shortest training times. 

2. Method 

The basic elements of reinforcement learning include an agent block, an environment 

block and action, observation, and reward signals. The agent, who is surrounded by the 

environment, interacts with it by performing actions and receives feedback through the 

observation and reward signals. This scheme is constituted by the RL basic elements and 

the necessary subsystems (Figure 1). The traffic cone is based on a differential robot model. 

It is the environment and is responsible for sending the 2D position and the rotation angle 

θ concerning the positive x axis. The agent chooses the perfect combination of angles θ to 

reach the desired position using the action signal. 

 

Figure 1. General scheme. 

2.1. Agent 

Due to the complexity of the process, an AC agent is elected. It is composed of two 

neural networks: the critic and the actor (Figure 2). The actor uses a politic gradient to 

estimate the probabilities of taking each possible action from each state and, therefore, 

chooses the action that maximizes the long-term reward. This action is evaluated by the 

critic network using a value or action-value function, which estimates the long-term re-

ward you will receive from each state or state-action. The value function from the critic is 

compared with the current value function from the environment and, as a result, the error 

is calculated. This error will feed back to the actor and critic to improve decision making. 

The summary of the features of the agent is: 

• Observations: 2D robot position and turning angle θ relative to the positive x-axis. 

• Observation space: continuous. 

• Action: turning angle θ. 

• Action space: discrete, with angles of 0º or 90º. 

• Agent: AC type. It contains an actor-critic algorithm. Suitable for continuous or dis-

crete action spaces. 
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Figure 2. Actor-critic scheme. 

2.2. Reward block 

The reward block consists of two constants defining the 2D target position, a Calcu-

lation function, and a reward design subsystem (Figure 3). The Calculation function ob-

tains the difference between the target position and the current position, sets an 3% error 

for the goal, and applies it to the signals mepase and fin. The mepase signal indicates if 

the goal has been exceeded or if the cone is exploring a wrong quadrant and the fin signal 

indicates if the goal has been reached. 

The reward design is based on the following criteria: 

• Reward 

• +1 when the cone approaches the goal. 

• + 100 when the cone reaches the goal. 

• Penalty 

• -5 when the cone moves away from the goal. 

• -30 when the cone exceeds the goal or is exploring a wrong quadrant. 

•  IsDone condition 

• When the cone exceeds ± 10. 

 

Figure 3. Reward block scheme. 
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Figure 4. Reward design subsystem. 

Within the reward design subsystem (Figure 4), a pattern of parallelism emerges in 

each signal. First, the digital signal is compared with a pulse signal to utilize the constant 

reward concept. Then, this signal is passed through a rising edge counter and multiplied 

by its corresponding value defined in the criteria. In the case of distances to the goal, it is 

proceeded to compare a current value with the previous one by applying an UnitDelay. If 

the previous value is greater than the current one, the cone is approaching the goal and it 

is awarded. Otherwise, it is penalized. 

2.3. Environment 

The environment is based on the dynamic-kinematic model of a differential robot, 

where the inputs are the engines, and the outputs are the 2D position and the turning 

angle. The robot is composed of a rigid body with two independent wheels and a castor 

wheel that provides stability. To develop the scheme, the following steps were taken: solv-

ing kinematics, solving dynamics, obtaining the model in state variables, and simulating 

it. 

 The scheme (Figure 5) consists of a block that implements the state variables model 

for the dynamic-kinematic relationship. This block outputs linear velocity and turning 

angle, allowing us to calculate the velocity of each axis. By integrating the velocity, the 

position is determined. Additionally, there is a draw function in charge of simulating the 

movement of the robot. The scheme also establishes initial constants so that the robot re-

turns to its starting position after each training episode. In our case, the starting position 

is (0, 0, 0). 

 

Figure 5. Dynamic-kinematic model of a differential robot. 

2.4. Angle control function 

This function converts the angle provided by the agent, through the dynamics and 

kinematics equations of the differential robot, into the corresponding motor signals. It has 

been decided to do it this way, instead of the action being the motors directly, because the 

agent only has one variable to discover, which will make things easier. This function de-

fines a speed, that varies around 1 m/s, and choose at what moment the motors must stop, 

due to the existence of a non-rectilinear deceleration that must be considered, otherwise 

the goal will not be reached. So, to configure the distances in which they will have to be 

stopped, the model must first be simulated with Signal Builder. 

3. Results 

After of the creation of the environment and its corresponding observation and action 

specifications, the reset function is established. It is activated when the stipulated time of 
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each training episode runs out or if the IsDone condition is reached. Afterwards, the AC 

agent and its neural networks are defined and finally, the model is trained.  

The proposed method was implemented in MATLAB_R2022b. The training was con-

ducted in Reinforcement Learning Episode Manager, which shows a graph with the re-

ward of each episode and its average reward throughout the training. This tool displays 

a graph where the x-axis represents the number of episodes, the y-axis represents the ep-

isode reward and the light and dark blue lines represent the reward for each episode and 

the average reward, respectively. As shown in the Figure 6, the first time the robot reached 

the goal was in episode 3, taking 39 min 26 s. Despite this, the robot continued exploring 

the area periodically using the exploration vs. exploitation concept. Then, the cone went 

more frequently towards the target, as seen in episodes 32, 33 and 34 or 40, 41 and 42, until 

the cone went constantly, as shown around episode 60. Due to the continuous recurrence 

of the robot going to the point, we concluded the training in the episode 113 in a time of 

22h 22min 49s. 

 

Figure 6. Reinforcement Learning Episode, point (1,1). 

 

Figure 7. Graphs corresponding to the final position x (up) and y (down) of the robot’s mass center. 

As shown in Figure 7, the point lied between the established limits 1.03-0.97 m. This 

was caused by the previous examination of the kinematic-dynamic model of the robot 

using Signal Builders, in which it was displayed how to reach the goal considering the 
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moment where the power supply to the engines is stopped. Consequently, it was possible 

to calculate the distance that the cone moves in the deceleration. This distance changes 

depending on the movement that the robot is making, so it is not unique, and it will have 

to be changed and recalculated by the previous testing with Signal Builders when the tar-

get-point varies. The position of the robot and the start-target points is shown in Figure 8. 

4. Conclusion 

This work demonstrates the feasibility of attaining a predetermined objective 

through the successful implementation of a robotic system with Reinforcement Learning 

(RL). This achievement indicates a notable enhancement in operational efficiency within 

real-world logistical processes. Moreover, RL is easily implementable with regards to se-

curity measures to ensure the physical integrity of the robot's body remains intact. 

 

Figure 8. Start point (left) and target point (right) of the robot using draw_robot function. 

Throughout this work, numerous challenges had surfaced. Maintaining a constant 

speed has proven to be unfeasible, as it introduces an additional variable that complicated 

the training process. Another obstacle encountered was the deceleration of the robotic 

cone, necessitating prior modeling of motor movements. Future work will focus on: (1) 

identifying an equation that describes the deceleration of the cone, (2) exploring the feasi-

bility of achieving a constant speed, and (3) extending the implementation to encompass 

the mapping signal for all quadrants, since currently, the work focused on a single point 

within the positive (x, y) plane. 
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