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Abstract: This paper establishes a comparable study on the influence of frequency-sweeping on 

discrete and continuous phase distributions associated with pulse excitations for a double-lambda 

atomic system in alkali metal vapours with a hyperfine structure.  The excitation dynamics pro-

vided a different scheme of sigmoidal types and the optical pulses are assumed to be Gaussians. 

We shall focus on the set-up of electromagnetically induced transparency (EIT). The phases of op-

tical fields give similarities to discrete square wave distributions influenced by ramping.  The re-

sults showed significant control of discrete phase distributions and temporal ramping by sigmoidal 

membership functions implementation. The relevant equations are the reduced Maxwell equations 

for the radiation fields, and the density matrix equation in the Liouville space governs the time 

evolution. 
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frequency-sweeping; sigmoidal membership functions implementation; alkali-metal vapours; D1 
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1. Introduction 

In recent papers, we have studied the temporal profile associated with the phases of 

dual-color pulses, such as the drive and the probe train in a double-lambda system 

composed of the hyperfine states of alkali atoms with a nuclear spin I = 3/2 [1,2]. The 

field’s phases were shown to form temporal discrete distributions such as square waves. 

The significant parameters were the detuning of the upper hyperfine levels and the 

atomic radiative relaxations. Here, we are interested in temporal discrete and continu-

ous phase distributions, which characterize the interaction with time-dependent fre-

quency sweeping for both drive and probe fields. The frequency scanned across the 

splitting of the upper hyperfine levels. The shape of frequency-sweeping is given in 

terms of sigmoidal-type membership functions (SMF) [3]. The benefits of using SMF rely 

on the fact that it contains two member functions to control the shape of the sigmoid 

function. We aim in such a way to manipulate the temporal profile of the field’s phases. 

Allen and Eberly obtained an analytical solution for two-level Bloch equations and de-

duced the sech pulse for the field envelope where they used tanh frequency-sweeping 

[4]. Recently, Kaviani et al. analyzed sweeping the resonance frequency of two-level 

atoms in an adiabatic regime [5]. They showed that the atomic frequency-sweeping 

(AFS) memory has similarities to EIT-based memories in quantum storage and retrieval 

of light experiments. 

The proposed approach in this paper attempts to generalize the foundations of Al-
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len and Eberly [4] to the case of multilevel atoms interacting with polychromatic elec-

tromagnetic fields. We further implement a dual-frequency frequency-sweeping on the 

optical transitions of the lower-lambda system. That is to study their impact on the 

phases without appealing to the polaritons concept introduced by Fleischhauer and 

Lukin [6] and applied by Kaviani et al to the case of sweeping the atomic frequency in 

quantum storage and retrieval of light [5]. 

2. The Atomic System and its Optical Excitation Scheme 

In this section, we analyze a double-lambda configuration with a two-color excita-

tion of 87Rb atom within the D1 line, i.e. 5s 2S1/2 − 5p 2P1/2 [2]. The bar states are described 

in terms of the generic four states: |1⟩ = |5 2S1/2(Fg = 1)⟩; |2⟩ = |5 2S1/2(Fg = 2)⟩; |3⟩ = |5 
2P1/2(Fe = 1)⟩; |4⟩ = |5 2P1/2(Fe = 1)⟩, where Fg (Fe) stands for the total angular momentum 

associated with ground and excited hyperfine states. The probe filed is tuned to the 

transition 1 ↔ 3, and the drive filed is tuned to the transition 2 ↔ 3. The 1 ↔ 2 is a dipole 

forbidden-transition. 

The hyperfine-splitting of the ground and excited states is denoted by Δωg and Δωe, 

respectively. The Rabi frequency for the probe and drive transition is described by Ωp 

and Ωr, respectively. In the following, we consider working in relative units. Ω(Δω) is 

the Rabi frequency (detuning) in units of γ, the spontaneous decay rate of the excited 

atomic state, 2P1/2. Whereas the normalized distance ζ and the normalized retarded-time 

τ are measured in units of the Beers length of one of the pulses and the excited atom-

ic-state lifetime, respectively. We take the spectroscopic data of 87Rb from [7]. In the pre-

sent work, the configuration of the probe-drive is different from the case of chirped 

stimulated rapid adiabatic passage considered by Chathanathi et al. [8]. We have kept 

only the one-photon detuning as a function of time, while the two-photon detuning is 

compensated by the instantaneous chirping of the probe and drive. The probe and drive 

one-photon time-dependent detuning are defined as  

                    δp(t) = ωp(t) − ω31,  

                    δr(t) = ωr(t) − ω32,                                     (1)  

where ωp and ωr stand for the instantaneous angular frequency of the probe and 

drive, with the atomic transition angular frequency ω31 and ω32. We aim to scan the fre-

quency across the upper hyperfine splitting Δωe. We set ωp(0) = ω31 and ωr(0) = ω32. The 

frequency sweeping will not undershoot or overshoot the upper hyperfine splitting. 

Therefore, the endpoints of the sweep are well-defined as pointed out by Sawyer et al 

[9]. 

We choose the function S(T, a, b) as in the Matlab sigmoidal membership function 

[3]. Its first argument T represents the interaction time domain T = [τ0, τf ], where τ0 and 

τf denote the initial and final time considered. The function S(T, a, b) contains two mem-

bership functions that control the time profile and the approach to unity for final times. 

Therefore the frequency-sweeping can be rewritten as  

                     δp(T, a, b) = Δωe ∗ Sp(T, a, b),  

                     δr(T, a, b) = Δωe ∗ Sr(T, a, b).                           (2)  

Finally, the instantaneous sweeping Δa,b(τ) can be written as the interpolation of δ(T, 

a, b) at the moment τ 

                         Δa,b(τ) = spline(T, δ(T, a, b), τ).                         (3)  

Figure 1 presents the frequency-sweeping Δa,b(τ) as a function of time for different 

membership functions of the sigmoidal-type excitation. 
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Figure 1. The frequency-sweeping function 

Δa,b(τ) in the course of time for different mem-

bership functions a and b with the assess-

ments:1, a = 0.0841, b = 70; 2, a = 0.0841, b = 100; 

3, a = 0.0841, b = 150; 4, a = 0.0841, b = 200 

 
Figure 2. The chopped frequency-sweeping func-

tion cΔa,b(τ) in the course of time for different 

membership functions a and b with the assess-

ments:1, a = 0.0841, b = 70; 2, a = 0.0841, b = 100; 3, 

a = 0.0841, b = 150; 4, a = 0.0841, b = 200. The chop-

ping time interval Δτ = 12.5. 
  

Figure 2 depicts the chopping of the frequency-sweeping function at a constant 

time step Δτ = 12.5. 76  

The time evolution of the reduced density matrix ρs(t) is given by the first-order 

Liouville-von Neumann differential equation  

                     −𝑖 
𝜕𝜌𝑠(𝜏)

𝜕𝑡
=  ℒ̂𝑡𝜌𝑠(𝜏),   ℏ =  1,                          (4) 

where ℒ̂𝑡 stands for the Liouvillian super-operator in the Liouville space [10,11]. 

The reduced-Maxwell equations are related to the two-component polarizations of 

rank one: 𝜌 3,1
(10)

 , 𝜌 4,1
(10)

  and 𝜌 3,2
(10)

 , 𝜌 4,2
(10)

 associated with probe and drive transitions as  
𝜕

𝜕𝜁
𝛺𝑝(𝜁, 𝜏)  = √8 6⁄ [𝜌3,1

(10)
 (𝜁, 𝜏)  − √5𝜌4,1

(10)
 (𝜁, 𝜏)],  

                 
𝜕

𝜕𝜁
𝛺𝑟(𝜁, 𝜏) = √8 2⁄ [𝜌3,2

(10)
 (𝜁, 𝜏) − 𝜌4,2

(10)
 (𝜁, 𝜏)],                    (5) 

where m = 0 for the magnetic quantum number. The probe and drive are linearly 

polarized and propagate co-linearly.  

The time evolution of the density matrix can be described as  

                                          
𝜕

𝜕𝜏
𝜌(𝜏)  =  𝐿(𝛤𝑘 , 𝛥𝜔𝑒 , 𝛥𝜔𝑔,𝑝 𝛥𝑎,𝑏(𝜏), 𝑟 𝛥𝑎,𝑏 ,

𝛺𝑝

√8
,

𝛺𝑟

√8
) 𝜌(𝜏),              (6)  

where Γk is the relative relaxation rate components of rank k, and L is the Liouvillian 

matrix [11]. Let rΔa,b(τ) and pΔa,b(τ) refer to the time-dependent detuning for the drive 

and probe, respectively. 

3. Numerical Results 

Throughout this study, we shall restrict ourselves to the response of rubidium at-

oms. Other alkalines like sodium and potassium give quite different time-dependent 

phase distributions indicating strong dependence on the upper hyperfine splitting and 

the atomic relaxations. Figure 3 depicts the temporal behavior of the inject pulses at ζ = 0 

in black curves for the probe and drive. The initial temporal pulse profiles for the probe 

and drive are assumed to be Gaussian. In this paper, we have truncated the initial inter-

action time to contain two probe fields only instead of three, as done in [1,2]. Further-

more, we have kept the domain of the time-axis to be the same. Long-time behavior 

manifests the ring field response, yielding significant ramping in the phase distributions. 

Alhasan et al. discussed the influence of the ring field on the propagation stability of ul-

tra-short pulses in duplicated two-level atoms media [12]. 

3.1. Pulse Profiles, Energy, Phase, and Propagation  
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Figure 4 shows the drive and probe temporal pulse profiles at the final distance 

considered, ζ = 21. Black curves present the reference pulses without chirping at ζ = 0.  

  

Figure 3. Drive and probe temporal pulse profiles. Black curves correspond to the reference pulses 

without chirping at ζ = 0, and various colors correspond to the final distance at ζ = 21. The effect of 

sweeping is considered for the third case with 3Sa,b and 3Δa,b at different time-chopping steps D = 

Δτ = 0, 5 , 7.5, and 12.5. 

The effect of sweeping is considered for the third case with 3Sa,b and 3Δa,b at different 

chirping, as presented in Figure 3. Drive field maxima at ζ = 21 are close to the injected 

pulse at ζ = 0. Let us compare the relative energies at ζ = 21 for different chirping as  

        [a1,b1Er a2,b2Er a3,b3Er a4,b4Er ] = [1.0000 1.1031 1.0334 1.0333]                (7) 

There is a tendency to increase the energy of the drive pulse as it is frequency-swept 

off the resonance frequency. There is strong absorption in the first probe pulse without 

chirping. The transparency increased as the probe pulses off-resonant through chirping. 

The transparency for the second probe in the train for large swept off-resonances is re-

markable. Figure 4 shows the enhancements of the imaginary part of the probe pulses. 

Such an effect is responsible for the phase production. Let us define the time section 

T1(τ) = [0, 180] as the effective duration-time of the pulses with the atomic medium 

without its tail. The initial interval, T0(τ) = [0, 70], is omitted since the field response is so 

small, and the phase takes the initial constant value of 0π. In Figure 5, we have consid-

ered presenting the phases’ temporal shape of the probe train for different locations in-

side the medium and for chopping time intervals: Δτ = 0, 5, 7.5, and 12.5. The discrete 

phase distributions are evident for small distances like ζ = 2. The phase jumps to build 

up at τ1 = 100 as the final time required to finish the interaction with the first probe 

pulses. The second phase discontinuity starts at time τ2 = 120, and it defines the time as 

the interaction with the second probe pulse in the train starts up. Beyond the second in-

teraction time, the phases remain at constant values, i.e. for τ ∈ [120, 180]. In Figure 5(a), 

we have distinguished discrete distributions associated with various colors as 

1. black : {0π,−1π, 0π}; with chopping time interval Δτ = 0,  

2. blue : {0π, 1π, 2π}; with chopping time interval Δτ = 5, 

3. red : {0π, 1π, 0π}; with chopping time interval Δτ = 7.5,  

4. green : {0π, 1π, 2π}; with chopping time interval Δτ = 12.5.  

For moderate distances as in Figure 5(b), we have distinguished the continuous and 

discrete combinations as  

1. black : {ϵ1(τ), 0π,−1π, 0π},  

2. red : {0π,−1π, 0π},  

3. green : {ϵ2(τ), 1π, 2π}.  
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The function ϵ1(τ) grows in a small interval but eventually collapses to 0π phases. 

While the function ϵ2(τ) grows up and ends with π values. 

In Figure 5(d), the blue curve overrides the black curve, leaving distinct limiting 

cases such as {−2π, 0π, 2π}. 

Figure 6 depicts the long-time behavior of temporal phases as the extended-time 

response for the ring field after the dominant existence of the pulses. Ring fields expose 

phase-ramping through short stepping and yielding phase mutations. Finally, limiting 

phases are stabilized. Intermediate chopping time intervals Δτ = 5, and 7.5 (blue and red 

curves) give substantial phases as −7π, and −10π, respectively. 

 

 

Figure 4. Temporal profile for drive and probe pulses where the effect of sweeping has been con-

sidered for the third case, 3Sa,b and 3Δa,b. Together with different chopping times at the finial dis-

tance ζ = 21. 

 

Figure 5. Phase profile corresponding to interaction-time for the probe pulse at different distances, 

where the effect of sweeping is considered for the third case, 3Sa,b and 3Δa,b, at various chopping 

times. The chopping time interval Δτ = 0, 5, 7.5, and 12.5 for black, blue, red and green curves, re-

spectively. 
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Figure 6. Extended-time phase profile for the probe pulse at different distances, where the effect of 

sweeping is considered for the third case, 3Sa,b and 3Δa,b, at various chopping times. The chopping 

time interval Δτ = 0, 5, 7.5, and 12.5 for black, blue, red and green curves, respectively. 

4. Conclusions 

We have discussed the phase response of a dual-color pulse excitation in alkaline 

vapours with a hyperfine structure. The pulses are frequency-swept within the upper 

hyperfine splitting, similarly. The sweeping excitation is a sigmoidal-type function with 

two membership functions to control the final time achievement and adjust the sweep-

ing rate. We have also analyzed the influence of increasing chopping time intervals on 

phase generation and stabilization within propagation inside the medium. We calculat-

ed the phases for one of the alkaline vapors, mainly rubidium. The distribution of phases 

is different for different alkaline due to the strong dependence on the upper hyperfine 

splitting and the atomic relaxation. The numerical results showed that the phases were 

categorized into two distinctive distributions: discrete and continuous, with a superpo-

sition of discrete or continuous ramping mutations. For a small distance, we obtained 

two-phase discontinuities. Beyond discontinuities, the phases maintained a constant 

value. We identified eight phase distributions for different chopping intervals. These 

distributions are produced during the pulse’s mean length. We have notified another 

type of phase generated due to the ring field for long-time response and asymptotic be-

havior for far distances. Ring fields expose phase-ramping through short stepping and 

producing phase mutations with substantial phases as −7π, and −10π. 
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