
Citation: Hamdi, W.; Hammoudi,

M.Y.; Boukhlouf, A. Observer Design

for Takagi-Sugeno Fuzzy Systems

with Unmeasurable Premise

Variables based on Differential Mean

Value Theorem. Eng. Proc. 2023, 56, 0.

https://doi.org/

Academic Editor: Firstname

Lastname

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Observer Design for Takagi-Sugeno Fuzzy Systems with
Unmeasurable Premise Variables based on Differential Mean
Value Theorem
Wail Hamdi *, Mohamed Yacine Hammoudi and Anouar Boukhlouf

Laboratory of Energy Systems Modeling (LMSE), Department of Electrical Engineering, University of Biskra,
BP 145, Biskra 07000, Algeria; my.hammoudi@univ-biskra.dz (M.Y.H.); anwar.boukhlouf@univ-biskra.dz (A.B.)
* Correspondence: wail.hamdi@univ-biskra.dz

Abstract: In this work, we present the design of an observer for Takagi-Sugeno fuzzy systems
with unmeasurable premise variables. Moving away from Lipschitz-based and L2 attenuation-
based methods—which fall short in eliminating the mismatching terms in the estimation error
dynamics—we leverage the differential mean value theorem. This approach not only removes these
terms but also streamlines the factorization of the estimation error dynamics, making it directly
proportional to the estimation error. To ensure the asymptotic convergence of the estimation error,
we apply the second Lyapunov theorem, which provides sufficient stability conditions described as
linear matrix inequalities. A numerical example applied on Three-tank hydraulic system is presented
to demonstrate the observer’s effectiveness.
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1. Introduction

In the industrial sector, cost-effectiveness is paramount. A key strategy to achieve this
is using observers to reduce the need for expensive sensors. The Luenberger observer [1] has
paved the way for numerous advancements. The Takagi-Sugeno (TS) fuzzy systems, which
represent nonlinear systems as a weighted sum of linear ones [2], have provided valuable
tools for understanding complex dynamics. Using the sector nonlinearity approach, these
systems can be accurately described [3]. Based on variables in their weight functions,
they’re classified into measurable premise variables (MPV) and unmeasurable premise
variables (UPV), with the latter being a primary research focus because it represents the
largest category of systems.

Designing observers for systems equipped with UPV tends to be more intricate than
their measurable counterparts. These complexities stem predominantly from the mis-
matching terms in the error dynamics. To address such hurdles, the scientific community
has forwarded various techniques. Initially, the Lipschitz-based method emerges as a
straightforward solution [4,5], yet stumbles when the nonlinear system’s Lipschitz constant
exceeds an admissible value, thereby introducing pronounced conservatism in Linear Ma-
trix Inequalities (LMIs) constraints. An alternative, the L2-attenuation-based approach [6,7],
focuses on minimizing the aforementioned mismatches. Though typically less conserva-
tive than the Lipschitz method, there remain instances where the attenuation level is not
minimum enough to be accepted, even if the simulation works. This paves the way for
the Mean Value Theorem (MVT) method [8,9], allowing the factorization of the estimation
error dynamics, which leads to making it proportional completely to the estimation error.
Hence, the mismatching terms disappeared from the estimation error dynamics.

The observer based on the MVT, leading to an exact transformation of error dynamics
into an LPV system, is introduced in [10]. Subsequent works, such as [11,12], represent
dynamic error using TS representation. This theorem’s applications span various studies:
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real-time motor control in [13], robust H∞ control for motors in [14], sensorless control for
a PMSM in [15], and automotive slip angle estimation in [12]. A notable advancement is
in [16], where line integral Lyapunov functions reduce conservatism in MVT observers.

In this paper, we introduce an observer design based on the mean value theorem
and validate its efficacy via a simulation on a three-tank hydraulic system. The paper’s
structure is as follows: Section 2 delves into the TS fuzzy representation and the mean
value theorem. Section 3 details the observer design, Section 4 showcases the simulation
results, and Section 5 concludes with potential directions for future research.

2. Preliminaries
2.1. Takagi-Sugeno Fuzzy Representation

Let us consider the following nonlinear system:{
ẋ(t) = f (x(t), u(t))
y(t) = g(x(t))

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the input vector and y(t) ∈ Rny

represents the output vector.
The TS model reformulates the nonlinear system (1) using a convex combination of

linear sub-models. Each ith sub-model follows the given fuzzy rule:

If ξ1 is Mi1 and . . . and ξl is Mil Then:
{

ẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

(2)

where ξ is premise variable, l is the number of premise variables and Mij is the membership
function of the ith fuzzy rule corresponding to the jth premise variable. Ai ∈ Rn×n, Bi ∈
Rn×nu , Ci ∈ Rny×n are known matrices.

The global TS fuzzy representation of the nonlinear system (1) is described as follows:{
ẋ(t) = ∑r

i=1 µi(x(t))(Aix(t) + Biu(t))
y(t) = ∑r

i=1 µi(x(t))Cix(t)
(3)

where µi(x(t)) are the weighting functions described by µi(x(t)) = ∏l
j=1 Mij

(
ξ j
)

and
verifies the convex sum property ∑r

i=1 µi(x(t)) = 1, 0 ≤ µi(x(t)) ≤ 1, ∀i = 1, . . . r.

2.2. Differential Mean Value Theorem [10]

Let Φ(x) : Rn => Rn be a differentiable vector function described as follows:

Φ(x) =
n

∑
i=1

en(i)Φi(x) (4)

where the set En is the canonical basis of the vectorial space Rn for all n ≥ 1 given by:

En = {en(i)|en(i) = (0, ..., 0, 1︸︷︷︸
i

, 0, ..., 0)T , i = 1, ..., n} (5)

Let a, b ∈ Rn. Then, there are constant vectors z1, ..., zn ∈ (a, b), zi 6= a, zi 6= b for
i = 1, ..., n such that the mean value theorem ensures the following relation:

Φ(a)−Φ(b) =
n

∑
i=1

n

∑
j=1

en(i)en(j)T ∂Φi
(
zj
)

∂xj
(a− b) (6)

Applying sector nonlinearity allows rewriting the above equation using TS transformation:

Φ(a)−Φ(b) =
s≤2n2

∑
i=1

hi(z(t))Hi(a− b) (7)
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whereHi represents the sub-models of the nonlinear term ∑n
i=1 ∑n

j=1 en(i)en(j)T ∂Φi(zj)
∂xj

, and

hi(z(t)) are its weighting functions.

3. Mean Value Theorem Observer Based Design

Let us consider the following observer for the fuzzy system (3):{ ˙̂x(t) = ∑r
i=1 µi(x̂(t))(Aix̂(t) + Biu(t)) + L(y(t)− ŷ(t))

y(t) = ∑r
i=1 µi(x̂(t))Cix̂(t)

(8)

The following theorem provides sufficient conditions described as LMI to ensure the
asymptotic convergence of the error dynamic:

Theorem 1. the estimation error converges asymptotically toward zero with decay rate α if there
exist matrices P = PT ∈ Rnx×nx > 0 and M ∈ Rnx×ny such that the following LMI holds
∀i = 1, ..., q:

Ai
T P + PAi −MCi − Ci

T MT + 2αP < 0 (9)

The observer gain is given by: L = P−1M.

Proof. the dynamics of the estimation error e(t) = x(t)− x̂(t) are given as follows:

ė(t) =
r

∑
i=1

µi(x(t))(Aix(t) + Biu(t))︸ ︷︷ ︸
Φ1(x(t))

−
r

∑
i=1

µi(x̂(t))(Aix̂(t) + Biu(t))︸ ︷︷ ︸
Φ1(x̂(t))

−L(
r

∑
i=1

µi(x(t))Cix(t)︸ ︷︷ ︸
Φ2(x(t))

−
r

∑
i=1

µi(x̂(t))Cix̂(t)︸ ︷︷ ︸
Φ2(x̂(t))

) (10)

Using the mean value theorem on the terms Φ1 and Φ2, the error dynamics become:

ė(t) = ∑
q
i=1 hi(z(t))(Ai − LCi)e(t) (11)

To study the stability of the error dynamics the quadratic Lyapunov function is used:

V(t) = e(t)T Pe(t) (12)

The derivative of V(t) with respect to t is:

V̇(t) =
q

∑
i=1

hi(z(t))eT
(
(Ai − LCi)

T P + P(Ai − LCi)
)

e (13)

To improve the performance of the estimation, the following decay rate is used:

V̇(t) ≤ −2αV(t) (14)

By substituting (12) and (13) in (14) the following inequality is obtained:

q

∑
i=1

hi(z(t))eT
a

(
AT

i P− CT
i LT P + PAi − PLCi + 2αP

)
ea < 0 (15)

The inequality 15 is not linear due to the product of the variables P and L. However,
applying the change of variable M = PL provides a solution for achieving the linear
stability conditions outlined in Theorem 1.

In order to solve the inequalities outlined in Theorem 1, we will utilize the Yalmip
Toolbox, a well-regarded modeling language in MATLAB designed for formulating opti-
mization problems. This toolbox seamlessly integrates with a variety of solvers, including
“Mosek”, “SDPT3”, and “LMILAB”, all recognized for their efficiency in handling LMIs.

The entire procedure can be depicted in the following graphical representation:
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Figure 1. Overall schematic diagram of observer design and implementation.

4. Simulation Results
4.1. Dynamic Model of the System

The three-tank hydraulic system illustrated in Figure 2, based on Guzman’s design [17],
features three tanks with equal cross-sectional areas S, connected by pipes of areas Sp1,2,3.
Water from a reservoir fills the first and second tanks via pumps P1 and P2, with flow rates
u1 and u2. Valves in each tank manage water release, and the system ensures water levels
in the order x1 > x3 > x2.

Figure 2. Three-tank hydraulic system.

Let us define x(t) =
[
x1 x2 x3

]T , u(t) =
[
u1 u2

]T and the premise variables

ξ(x) =
[
ξ1(x) ξ2(x) ξ3(x)

]T . Using these definitions, the system can be represented in
the following state-space form:

ẋ(t) =
1
S

 −C1ξ1(x) 0 0
0 −C2ξ2(x) C3ξ3(x)

C1ξ1(x) 0 −C3ξ3(x)

x(t) +
1
S

 1 0
0 1
0 0

u(t) (16)

where:

ξ1(x) =
√
|x1 − x3|

x1
, ξ2(x) =

√
x2

x2
, ξ3(x) =

√
|x3 − x2|

x3
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C1 = η13.Sp1.sign(x1 − x3).
√

2g, C2 = η20.Sp2.
√

2g, C3 = η32.Sp3.sign(x3 − x2).
√

2g

With a gravitational pull of g = 9.8 m/s2, the system has discharge coefficients η13 = η32 =
0.456 and η20 = 0.652. The tubes’ cross-sectional areas are Sp1 = Sp3 = 0.5× 10−4 m2

and Sp2 = 0.8× 10−4 m2, with all tanks having S = 154× 10−4 m2. Given the constraint
x1 > x3 > x2 and these parameters, we derive C1 = 1.0094× 10−4, C2 = 2.3092× 10−4,
and C3 = 1.0094× 10−4.

4.2. Observer Design for Three-Tank Hydraulic System

In order to apply Theorem 1, the matrices Ai and Ci have to be determined. According
to the mean value theorem, Φ1(ξ) and its Jacobian ∂Φ1(ξ)

∂x can be defined as:

Φ1(ξ) =
1
S

 −C1ξ1x1
−C2ξ2x2 + C3ξ3x3
C1ξ1x1 − C3ξ3x3

, ∂Φ1(ξ)
∂x = 1

S


−C1

2 ε1(x) 0 C1
2 ε1(x)

0 −C2
2 ε2(x)− C3

2 ε3(x) C3
2 ε3(x)

C1
2 ε1(x) C3

2 ε3(x) −C3
2 ε3(x)− C1

2 ε1(x)


where the new premise variables εi(x) are given by: ε1(x) = 1√

x1−x3
; ε2(x) = 1√

x2
; ε3(x) =

1√
x3−x2

and there limits are: Lε1(j) =
[
2 12

]
, Lε2(k) =

[
2 4

]
and Lε3(d) =

[
2 14

]
for

j, k, d = 1 : 2.
By replacing every premise variable by its limits respectively in a loop, the matrices

Ai can be obtained as follows for (i = 1, . . . , 8):

Ai =
1
S


−C1

2 Lε1(j) 0 C1
2 Lε1(j)

0 −C2
2 Lε2(k)− C3

2 Lε3(d)
C3
2 Lε3(d)

C1
2 Lε1(j) C3

2 Lε3(d) −C3
2 Lε3(d)− C1

2 Lε1(j)


According to the output equation, which is linear, Φ2(ξ) = Cx(t), hence:

∂Φ2(ξ)

∂x
= C =

[
1 0 0
0 1 0

]
Therefor: Ci = C

Solving the LMI in Theorem 1, the following observer matrices are obtained:

L =

 0.4840 0.9309
−0.9247 0.4900
0.0010 0.1682

, P =

 1.1432 −0.0016 −0.1489
−0.0016 1.1300 −0.1619
−0.1489 −0.1619 1.8552


4.3. Simulation Validation

The simulation has been validated by considering the initial condition as x0 =[
0.08 0.06 0.07

]T and x̂0 =
[
0.181 0.1610 0.171

]T . The system inputs are shown
in Figure 3. The tanks levels and their estimation are shown in Figure 4.
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5. Conclusions

This paper introduces a design for the Takagi-Sugeno observer using the mean value
theorem, bypassing the commonly used Lipschitz assumption and the L2 attenuation-
based method. While our method adeptly tracks the system’s states, it uniquely applies
the MVT to systems with nonlinear outputs, contrasting prior works such as [8,9,13,14]
that targeted only linear output systems. However, the proposed approach does have
limitations, particularly for systems with unknown inputs, directing our future research
ambitions. We aim to explore observer designs accommodating unknown inputs and to
investigate emerging control system methodologies, like the adaptive fuzzy control for
pneumatic active suspensions as seen in [18]. This paves the way for the Takagi-Sugeno
observer’s broader applications in complex systems.
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