
 
 

 
 

 
Chem. Proc. 2023, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/chemproc 

Proceeding Paper 

A Robust Regression-Based Modeling to Predict  
Antiplasmodial Activity of Thiazolyl-pyrimidine Hybrid  
Derivatives against Plasmodium falciparum † 
Kevin S. Umoette *, Charles O. Nnadi * and Wilfred O. Obonga * 

Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of 
Nigeria Nsukka, 410001 Enugu, Nigeria; umoettekevin@gmail.com (K.S.U.);  
charles.nnadi@unn.edu.ng (C.O.N.); wilfred.obonga@unn.edu.ng (W.O.O.); Tel.: +234-7038356262 (K.S.U.); 
+234-8064947734 (C.O.N.); +234-8033305022 (W.O.O.) 
† Presented at the 27th International Electronic Conference on Synthetic Organic Chemistry (ECSOC-27),  

15–30 November 2023; Available online: https://ecsoc-27.sciforum.net/. 

Abstract: Thiazolyl-pyrimidine hybrid plays significant roles in the biological activities and SAR of 
thiazolylpyrimidines (Tzpd), thiazolopyrimidines and thienopyrimidines due the combination of 
the thiazole and pyrimidine pharmacophores. The study developed regression-based models for 
the prediction of antiplasmodial activity of 43 Tzpd hybrid obtained from the ChEMBL database. 
The molecular descriptors (145 features) were scaled down to 6 using the recursive feature elimina-
tion. The X- and Y-matrix were split into 34 train and 9 test sets using a split ratio of 0.20. Regression 
models were built using scikit-learn algorithms: multiple linear regression (MLR), k-Nearest Neigh-
bours (kNN), Support Vector Regressor (SVR) and Random Forest Regressor (RFR) to predict the 
pIC50 of the test set. The models were evaluated using R2, mean squared error (MSE), mean absolute 
error (MAE), root mean squared error (RMSE), p-values, F-statistic, and variance inflation factor 
(VIF). Of the 145 features calculated for the 43 Tzpd, 6 molecular features: FCASA-, MNDO_LUMO, 
E_str, vsurf_HB1, vsurf_G and vsurf_DD12 (p < 0.05; VIF < 5) were found to significantly influence 
the antiplasmodial activity. Five-fold cross-validation performance scores of MLR, kNN, SVR, and 
RFR showed that the performance metrics of MLR (MSE = 0.1453; R2 = 0.680; MAE = 0.290; RMSE = 
0.381; pIC50(predicted) = 8.06 – 0.45vsurf_G + 0.37FCASA‒ – 0.42MNDO_LUMO – 0.20E_str + 
0.30vsurf_HB1 – 0.38vsurf_DD12) outperformed other models. The study developed predictive 
models and provided insights into the chemical features necessary for the optimization of thiazolyl-
pyrimidine to enhance antiplasmodial activity. 
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1. Introduction 
Malaria is a disease caused by the parasite of the genus Plasmodium and transmitted 

through the saliva of female anopheles mosquitoes [1]. Sub-Saharan Africa is currently 
overwhelmed by P. falciparum. Several heterocyclic compounds and their derivatives are 
important chemotherapeutic classes and are still useful singly and in combinations for the 
treatment of malaria [2]. Various structural modification of heterocycles with improved 
activities has been reported, and translated to useful drugs [3]. To date, artemisinin-based 
combination therapy has remained the most potent first-line treatment for P. falciparum. 
The emergence and rapid spread of artemisinin-resistant strains of P. falciparum are indi-
cations that a continuous search for a more efficacious remedy for malaria is imperative 
[2]. The combined safety, favourable physicochemical properties and cost-effectiveness of 
hybrid designs make it a good candidate for structural modifications to overcome re-
sistance and declining efficacy 
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Different strategies have been put forth to design new chemical entities with opti-
mum pharmacokinetic and pharmacodynamic properties [4]. The QSAR method uses 
computation modeling to unravel associations between the biological activities and phys-
icochemical properties of chemical substances to create a robust statistical model to pre-
dict the biological activities of novel chemical entities [5]. Pyrimidines are important sub-
stances in the synthesis of various active molecules that are extensively used in the inter-
mediate skeleton of antiplasmodial and have attracted more attention due to their exten-
sive biological activities including antiviral, antibacterial, antifungal, and insecticidal ac-
tivities [5]. For example, pyrimidine derivatives bearing a dithioacetal moiety as effective 
antiviral agents have been reported [6] Thiazolyl-pyrimidine hybrid plays significant roles 
in the biological activities and SAR of thiazolylpyrimidines (Tzpd), thiazolopyrimidines 
and thienopyrimidines due the combination of the thiazole and pyrimidine pharmaco-
phores. 

This study, therefore, developed a robust model using regression and classification 
such as knearest neighbours, kNN classifier, support vector classifier, (SVC) and Random 
Forest Regressor (RFR)) algorithms to; (i) develop a model to predict the pIC50 of any un-
tested Tzpd analogues or similar derivatives against P. falciparum strains; and (ii) explain 
SARs of Tzpd derivatives against P. falciparum strains. 

2. Methods 
2.1. Chemical Data Set 

The chemical data set comprises 43 derivatives of thiazolyl-pyrimidine hybrids ob-
tained from the ChEMBL database of compounds with antimalarial activity against Plas-
modium falciparum. The detailed chemical structures and pIC50 of the compounds used in 
this study are shown in the supplementary materials (Figure S1a,b). 

2.2. Preparation of Data Set 
The SMILES were initially converted to structures to form a molecular database and 

converted to 3D by energy minimization using the MMFF94x force field. The energy-min-
imized compounds were subjected to conformational search using LM dynamics [5]. The 
molecules were then subjected to further energy minimization using the Hamiltonian 
semi-empirical AM1 MOPAC modules and the resulting conformers were used for further 
studies. 

2.3. Computation of Molecular Descriptors 
The molecular fragments of the AM1 energy minimized Tzpd were subjected to both 

2D and 3D molecular descriptor calculation using the default settings of the molecular 
operating environment (MOE) software [7] 

2.4. Data Pretreatment 
One hundred and forty-five chemical features/descriptors were computed for the 

compounds and the pIC50 was calculated from the negative decadic logarithm of the IC50. 
The pIC50 column (the values to be predicted) formed the Y-matrix, while the rest of the 
dataset formed the X-matrix. Standardization of the X-matrix was done using the Stand-
ardScaler function [8]. It is important to standardize the variables so that they will all have 
a comparable scale. 

2.5. Selection of Relevant Descriptors 
Recursive feature elimination (RFE) was used to select significant features using the 

linear regression function from Skearn for RFE [8]. The number of features considered to 
build the model was placed at 25 using m > n2. where m is the number of molecules, and 
n is the number of features 
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2.6. Data Splitting 
The X- and Y-matrix were split into the train (34 molecules) and test (9 molecules) 

sets using a split ratio of 0.2, where 80% is assigned to the train set and 20% is assigned to 
the test set. The size of the training dataset was denoted as X-train, Y-train, while the size 
of the test dataset was X-test, and Y-test. The training set was used to train the model using 
a fit method, while 9 molecules belonging to the test set were used to validate the models. 
The hyper-parameters of the models were adjusted on the test dataset to obtain the best 
hyper-parameter configuration using a random search because their hyper-parameters 
were continuous 

2.7. Regression Modeling 
The Statsmodel package of the Python software was used to get the detailed statistics 

and summary of the model [8,9]. The machine learning scikit-learn algorithms; multiple 
linear regressor (MLR), k-Nearest Neighbours (kNN), Support Vector Regressor (SVR) 
and Random Forest Regressor (RFR)) were deployed to predict the pIC50 values of the test 
set compounds. The goal was to discover the best algorithm capable of predicting the ac-
tivity of untested compounds 

2.8. Model Evaluation 
Different evaluation metrics such as the coefficient of determination (R2), mean 

squared error (MSE), mean absolute error (MAE) and root mean squared error (RMSE) 
were deployed to assess the performance of the models. The p-values, F-statistic, and var-
iance inflation factor (VIF) were also used [10]. 

3. Results and Discussion 
3.1. Chemical Data Set 

The 43 congeners of the thiazolyl-pyrimidine hybrid (Figure 1) used for the study 
were obtained from the ChEMBL. They were selected based on pharmacophore (thiazolyl-
pyrimidine skeleton), the diverse chemical substituents forming the congeners, the in 
vitro antiplasmodial activity (against P. falciparum) and the high negative decadic loga-
rithm values (3.04 units for 5.73 < pIC50 < 8.77). 

S

 
Figure 1. Pharmacophore of thiazolyl-pyrimidine hybrid derivatives. 

3.2. Selection of Significant Features 
The number of significant features to be considered to build the model was fixed at a 

hypothetic value of 25 out of 145 using the RFE. To further eliminate the insignificant fea-
tures, the RFE-selected features were further subjected to the Statsmodelling function to 
check the detailed statistics and summary of the model from the selected features. The 
result of the analysis showed that there were still features with p-values greater than 0.05 
on assumptions that the covariance matrix of the standard errors (SEs) was correctly spec-
ified and that the smallest eigenvalue of 1.99 × 10−33 might indicate strong multicollinearity 
problems or that the design matrix was singular. 

Then the VIF values for each feature of the model were calculated (Table 1). All the 
features with VIF > 5 and p > 0.05 were considered insignificant and as a result, dropped 
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from the model. Since the p-values and VIF of FCASA-, vsurf_G, vsurf_HB1, E_str, 
MNDO_LUMO, vsurf_DD12 were in the desired range, that means they are significant 
features and will be used to build the machine learning models. 

Table 1. Results of Statsmodel analysis. 

Features Coeff SE T p-Value 0.025–0.875 VIF 
const 8.0584 0.088 91.607 0.000 7.878–8.238 - 

vsurf_EDmin3 0.3627 0.271 1.341 0.190 −0.191–0.916 39.46 
vsurf_D7 −0.3807 0.266 −1.430 0.163 −0.925–0.164 9.16 
vsurf_D8 0.1435 0.255 0.562 0.578 −0.379–0.665 8.42 

vsurf_EDmin1 −0.3076 0.252 −1.222 0.232 −0.823–0.207 8.19 
FCASA- 0.5262 0.159 3.305 0.003 0.201–0.852 3.28 
vsurf_G 0.3665 0.147 2.495 0.019 0.066–0.667 2.79 

vsurf_HB1 −0.3665 0.131 −2.808 0.009 −0.633–0.100 2.20 
E_str −0.3877 0.127 −3.044 0.005 −0.648–0.127 2.10 

MNDO_LUMO −0.3641 0.126 −2.880 0.007 −0.623–0.105 2.07 
vsurf_IW1 −0.1351 0.123 −1.101 0.280 −0.386–0.116 1.94 
vsurf_IW2 0.0463 0.117 0.396 0.695 −0.193–0.285 1.77 

vsurf_DD12 −0.2716 0.108 −2.514 0.018 −0.493–0.051 1.51 
vsurf_Wp6 0.0651 0.101 0.647 0.523 −0.141–0.271 1.31 

The molecular features are: third lowest hydrophobic energy (vsurf_EDmin3); hydrophobic volume 
at −1.4 (vsurf_D7); hydrophobic volume at −1.6 (vsurf_D8); lowest hydrophobic energy (vsurf_ED-
min1); fractional charge-weighted negative surface area (FCASA-); surface globularity (vsurf_G); H-
bond donor capacity at −0.2 (vsurf_HB1); hydrophilic integy moment at −0.2 (vsurf_IW1); hydro-
philic integy moment at −0.5 (vsurf_IW2); vsurf_EDmin1, vsurf_EDmin2 distance (vsurf_DD12); 
polar volume at −4.0 (vsurf_Wp6); LUMO energy, ev (MNDO_LUMO); bond stretch energy (E_str); 
lowest unoccupied molecular orbital (LUMO). 

3.3. Residual Analysis of the Model 
The residue analysis of the error terms was checked to ascertain their normal distri-

bution and the error terms of the histogram were plotted (Figure 2). A normal distribution 
is one of the major assumptions of multiple linear regression and since the error terms are 
normally distributed, the model can be used to make predictions on the test dataset. 

 
Figure 2. Histogram of error terms. 
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3.4. Model Building 
Machine learning-based algorithms were built from the significant features to predict 

the pIC50 values of the test molecules. The predicted pIC50 values for the test compounds 
are shown in Table 2. 

Table 2. Predicted pIC50 of the test molecules using MLR model. 

Tzpd Actual pIC50 Predicted pIC50 
25 8.37 8.380461 
8 8.64 8.667578 

27 7.35 6.915064 
11 8.64 8.122377 
22 8.77 7.905053 
14 8.64 7.908562 
6 8.77 8.151523 
2 7.28 7.760386 
7 8.42 8.064295 

The details of Tzpd used as test set can be found in the supplementary Figure S1a,b. 

To prove further confidence in our predicted pIC50 values, the predicted pIC50 scores 
were plotted against the experimental pIC50 scores for both the train set and the test set, 
using different machine learning models (Figure 3). The closeness of the predicted pIC50 
scores and the experimental scores for Figure 3A,C shows the robustness of the MLR and 
SVR models in predicting the antiplasmodial activity of Tzpd. This showed that the pre-
dictive powers of the models are competent. The correlations of the predicted and exper-
imental pIC50 values are shown in Figure 3A–D. The R2 indicates how closely the data 
resemble the regression line and how well the data fit the regression line. 

 
Figure 3. Regression plots of different models (A = MLR; B = KNN; C = SVR and D = RFR). 
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3.5. Model Evaluation and Comparison 
The summary of the performance of the models is shown in Table 3. 

Table 3. Model prediction statistics. 

ML Algorithms kNN SVR RFR MLR 
Test MSE 0.00 0.053 0.069 0.1453 

5-fold cross-validation 0.59 ± 0.41 0.67 ± 0.45 0.75 ± 0.29 0.091 ± 0.010 
Test R2 1.00 0.61 0.36 0.68 

5-fold cross-validation 0.36 ± 0.46 0.63 ± 0.62 0.59 ± 2.21 0.745 ± 0.281 
Test MAE 0.00 0.174 0.209 0.290 

5-fold cross-validation 0.55 ± 0.18 0.58 ± 0.20 0.60 ± 0.60 0.270 ± 0.101 
Test RMSE 0.00 0.230 0.262 0.381 

5-fold cross-validation 0.72 ± 0.27 0.77 ± 0.27 0.84 ± 0.18 0.302 ± 0.021 

Five-fold cross-validation scores of MLR, kNN, SVR, and RFR were plotted on a box-
plot and their performances were compared (Figure 4). The performance metrics for each 
model were plotted as a box. Using the 5-fold cross-validation approach, MLR and SVR 
outperforms the other models, as the median line was visibly higher in all the metrics 
used. 

 
Figure 4. Boxplots of 5-fold CV scores. 

4. Conclusions 
The study demonstrated that MLR and SVR are powerful predictive supervised 

learning model with reproducible outcomes and the lowest model errors when compared 
to kNN and RFR. The multiple linear regression equation: pIC50(predicted) = 8.06 – 
0.45vsurf_G + 0.37FCASA‒ – 0.42MNDO_LUMO – 0.20E_str + 0.30vsurf_HB1 – 
0.38vsurf_DD12) allows for the prediction of antiplasmodial activity which can be utilized 
in the design of new bioactive chemical entities using artificial intelligence qualities. 
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Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: Chemical data set. 
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