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Abstract: Flame retardants play a crucial role in mitigating the hazards associated with fires by 

impeding their ignition and spread. However, conventional halogen-based flame retardants have 

encountered environmental and health concerns due to their persistence, bioaccumulation, and 

potential toxicity. In light of these concerns, the present study aimed to develop innovative 

compounds with potential application as flame retardant system that mitigates the drawbacks 

associated with halogen-based compounds. Several phosphoramidates were synthesized in a single 

step under mild conditions from the H-phosphonate dibenzo[1,3,2]dioxaphosphepine-6-oxide 

(BPPO), following a method based on the oxidation of the reactant in the presence of a suitable 

aliphatic or aromatic amine. The compounds were isolated with high purity and the formulations 

were confirmed by multinuclear NMR spectroscopy. 
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1. Introduction 

Since the initial report in 1972, the organophosphorus compound 9,10-dihydro-9-

oxa-10-phosphaphenanthrene-10-oxide (DOPO) and its derivatives revealed to be of 

noticeable industrial interest, being viable alternatives to halogenated flame retardants 

[1,2]. Being a H-phosphinate, DOPO shows two different tautomeric forms in equilibrium 

in solution and it is thus able to behave both as nucleophile or as electrophile [3,4]. The 

reactivity of the P-H bond opens the possibility to formally replace the hydrogen atom 

with several functional groups, affording compounds having specific properties, but 

maintaining the flame retardant activity both in gas and condensed phase [5–9]. For 

instance, the P-H bond can be replaced with a P-C bond through reactions based on the 

nucleophilic attack on electron-poor carbon atoms [10–15], on the Michael addition [16–

20] and on the Michaelis-Arbuzov rearrangement [21–23]. Phosphonamidates and 

phosphonates can be prepared from DOPO with the intermediate synthesis of 9,10-

dihydro-9-oxa-10-phosphaphenanthrene-10-chloride (DOPO-Cl). Such a compound is 

generally obtained on the basis of the Atherton-Todd reaction using CCl4 as reactant [24–

29], even if alternative chlorinating agents were considered, such as sulfuryl chloride, 

trichlorocyanuric acid, chlorine gas and N-chlorosuccinimide [30–34]. 

Another cyclic phosphorus compound of growing interest in the field of flame 

reactants is the H-phosphonate dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO), that can 

be isolated from a three-component reaction involving 2,2′-bisphenol, phosphorus 

trichloride and water. The P-H bond revealed noticeable reactivity, and several 

organophosphorus BPPO derivatives can be prepared of the basis of phospha-Michael 
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additions to unsaturated compounds [35–37]. It is worth noting that the different electron 

density on the phosphorus atom in BPPO with respect to DOPO alters the flame retardant 

behaviour, since P-containing gases are preferentially released when low positive partial 

charges are present on the phosphorus atom. Hence, DOPO derivatives with low 

molecular weights mainly act in the gas phase, stopping the chain radical reaction, while 

the flame retardant action of BPPO-based compounds is more concentrated in the 

condensed phase, where the formation of a thermally stable char layer is promoted. 

It is known that synergistic effects in the flame retardant behaviour can occur on 

mixing or reacting phosphorus- and nitrogen-based compounds [38–43], therefore the 

development of phosphoramidate (or amidophosphate) derivatives of BPPO appears a 

promising approach to obtain flame retardants with tailored properties. Given our interest 

towards cyclic organophosphorus compounds and phosphoramidates [44–48], some of us 

patented a straightforward approach for the preparation of BPPO derivatives with P-N 

bonds, working under mild conditions [49]. Herein we report the synthesis and 

characterization of dibenzo[1,3,2]dioxaphosphepine-6-oxide phosphoramidates derived 

from butylamine, morpholine, 4-acetylpiperazine, aniline and p-toluidine. 

2. Materials and Methods 

The reactants and solvents were Merck products and they were used as received. 

Dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO) was synthesized according to a 

reported procedure [37]. In a 100 mL three-necked round-bottom flask equipped with 

condenser, magnetic stirring bar, dropping funnel and nitrogen inlet, 2,2′-biphenol (25.75 

g, 13.8 mmol) was dissolved in 50 mL of 1,4-dioxane and 2.5 mL of water and heated to 

reflux. A minimum flow of nitrogen was continuously passed through the solution. 

Phosphorus trichloride (12.1 mL, 13.8 mmol) was added within 3 h to the boiling reaction 

mixture. The generated HCl gas was absorbed in a trap filled with water. The reaction 

mixture was heated to reflux for an additional hour, then the solvent was removed under 

reduced pressure to obtain a viscous oil, that became solid overnight. The product was 

triturated with 50 mL of diethyl ether, filtered, washed with fresh diethyl ether (10 mL) 

and dried under vacuum. Yield 75%. 

Elemental analyses (C, H, N) were carried out using an Elementar Unicube 

microanalyzer. Melting points were registered using a FALC 360 D instrument equipped 

with a camera. Infrared (IR) spectra were registered using a Perkin-Elmer SpectrumOne 

spectrophotometer between 4000 and 450 cm−1 using KBr pellets. Mono- and 

bidimensional nuclear magnetic resonance (NMR) spectra were collected employing a 

Bruker Avance 400 instrument operating at 400.13 MHz of 1H resonance. 1H NMR spectra 

are referred to the partially non-deuterated fraction of the solvent, itself quoted with 

respect to tetramethylsilane. 31P{1H} chemical shifts are reported with respect to 85% 

H3PO4, with downfield shifts considered positive. 13C{1H} NMR spectra are referred to the 

solvent signal, quoted with respect to tetramethylsilane. 

2.1. Synthesis of BPPO Phosphoramidate Derivatives 

6-(butylamino)dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-NHButyl), 6-

morpholinodibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-Nmorph), 6-(4-

acetylpiperazino)dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-NAcPz), 6-

(phenylamino)dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-NHPh) and 6-(p-

tolylamino)dibenzo[1,3,2]dioxaphosphepine-6-oxide (BPPO-NHTol) were all synthesized 

following the same general method. In a typical preparation, BPPO (1.15 g, 5.00 mmol) 

and 16.5 mmol of the proper amine (butylamine, 1.6 mL; morpholine, 1.4 mL; 1-

acetylpiperazine, 2.13 g; aniline, 1.51 g; p-toluidine, 1.77 g) were dissolved in 30 mL of 

dichloromethane, then I2 (1.26 g, 5.00 mmol) was slowly added. The resulting reaction 

mixture was kept under vigorous stirring at room temperature for three hours. The solid 

by-product that separated with all the amines with the exception butylamine was 
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removed by filtration and washed with dichloromethane, then the organic solution was 

washed with brine (3 × 100 mL), dried with anhydrous Na2SO4 and filtered. The solvent 

was removed by evaporation under reduced pressure. In the case of the morpholine 

derivative the raw product was purified by crystallization with cold ethanol (10 mL), 

followed by filtration. In the other cases diethyl ether (10 mL) was added and the solid 

formed was collected by filtration and washed with diethyl ether. All the products were 

finally dried under vacuum. Further product was collected from the diethyl ether solution 

in the case of the butylamine derivative after keeping the solution at −20 °C overnight. 

Yields: 30% (BPPO-NHButyl); 54% (BPPO-Nmorph); 12% (BPPO-NAcPZ); 94% (BPPO-NHPh); 

60% (BPPO-NHTol). 

2.1.1. Characterization of BPPO-NHbutyl 

Anal. calcd for C16H18NO3P (303.29 g mol−1,%): C, 63.36; H, 5.98; N, 4.62. Found (%): 

C, 63.10; H, 6.00; N, 4.59. M.p. (°C): 101. IR (KBr, cm−1): 3355 νNH, 1243 νP=O. 1H NMR 

(CDCl3, 298 K): δ 7.53 (dd, 2H, JHH = 7.6 Hz, JHH = 1.8 Hz, arom), 7.42 (t, 2H, JHH = 7.6 Hz, 

arom), 7.33 (t, 2H, JHH = 7.6 Hz, arom), 7.29 (d, 2H, JHH = 7.6 Hz, arom), 3.05–2.90 (m, 3H, 

NH+CH2), 1.48 (m, 2H, CH2), 1.31 (m, 2H, CH2), 0.88 (t, 3H, JHH = 7.3 Hz, CH3). 31P{1H} 

NMR (CDCl3, 298 K): δ 13.36 (s). 13C{1H} NMR (CDCl3, 298 K): 148.12 (d, JPC = 9.4 Hz, arom-

Cipso), 129.90 (d, JPC = 1.2 Hz, arom-CH), 129.78 (d, JPC = 1.2 Hz, arom-CH), 128.59 (d, JPC = 

1.6 Hz, arom-Cipso), 126.50 (d, JPC = 1.8 Hz, arom-CH), 121.67 (d, JPC = 4.2 Hz, arom-CH), 

41.92 (s, CH2), 34.03 (d, JPC = 5.5 Hz, CH2), 19.58 (s, CH2), 13.63 (s, CH3). 

2.1.2. Characterization of BPPO-Nmorph 

Anal. calcd for C16H16NO4P (317.28 g mol−1,%): C, 60.57; H, 5.08; N, 4.41. Found (%): 

C, 60.65; H, 5.10; N, 4.39. M.p. (°C): 171. IR (KBr, cm−1): 1251 νP=O. 1H NMR (CDCl3, 298 K): 

δ 7.53 (dd, 2H, JHH = 7.7 Hz, JHH = 1.7 Hz, arom), 7.44 (tdd, 2H, JHH = 7.7 Hz, JHH = 1.7 Hz, 

JPH = 0.9 Hz, arom), 7.35 (tt, 2H, JHH = 7.7 Hz, JHH = JPH = 1.2 Hz, arom), 7.32 (dt, JHH = 7.7 Hz, 

JHH = 1.2 Hz), 3.62 (m, 4H, O-CH2), 3.16 (m, 4H, N-CH2). 31P{1H} NMR (CDCl3, 298 K): δ 

10.17 (s). 13C{1H} NMR (CDCl3, 298 K): δ 148.31 (d, JPC = 9.6 Hz, arom-Cipso), 130.04 (d, JPC = 

1.2 Hz, arom-CH), 139.97 (d, JPC = 1.2 Hz, arom-CH), 128.23 (d, JPC = 1.4 Hz, arom-Cipso), 

126.28 (d, JPC = 1.8 Hz, arom-CH), 121.70 (d, JPC = 4.4 Hz, arom-CH), 66.98 (d, JPC = 5.0 Hz, 

O-C), 45.47 (d, JPC = 1.0 Hz, N-C). 

2.1.3. Characterization of BPPO-NAcPz 

Anal. calcd for C18H19N2O4P (358.33 g mol−1,%): C, 60.33; H, 5.34; N, 7.82. Found (%): 

C, 60.09; H, 5.37; N, 7.78. M.p. (°C): 141. IR (KBr, cm−1): 1646 νC=O, 1251 νP=O. 1H NMR 

(CDCl3, 298 K): δ 7.55 (dd, 2H, JHH = 7.8 Hz, JHH = 1.2 Hz, arom), 7.44 (t, 2H, JHH = 7.4 Hz, 

arom), 7.36 (t, 2H, JHH = 7.4 Hz, arom), 7.30 (d, 2H, JHH = 7.8 Hz, arom), 3.53 (s, br, 2H, N-

CH2), 3.44 (s, br, 2H, N-CH2), 3.22 (s, br, 2H, N-CH2), 3.09 (s, br, 2H, N-CH2), 2.08 (s, 3H, 

CH3). 31P{1H} NMR (CDCl3, 298 K): δ 9.54 (s). 13C{1H} NMR (CDCl3, 298 K): δ 169.17 (s, 

C=O), 148.16 (d, JPC = 9.6 Hz, arom-Cipso), 130.12 (d, JPC = 0.9 Hz, arom-CH), 130.05 (d, JPC = 

1.0 Hz, arom-CH), 128.15 (d, JPC = 1.5 Hz, arom-CH), 126.42 (d, JPC = 1.8 Hz, arom-CH), 

121.59 (d, JPC = 4.3 Hz, arom-CH), 46.73 (s, N-C), 45.35 (s, N-C), 41.66 (s, N-C), 21.30 (s, 

CH3). 

2.1.4. Characterization of BPPO-NHPh 

Anal. calcd for C18H14NO3P (323.28 g mol−1,%): C, 66.87; H, 4.36; N, 4.33. Found (%): 

C, 66.60; H, 4.38; N, 4.35. M.p. (°C): 155. IR (KBr, cm−1): 3378 νNH, 1197 νP=O. 1H NMR 

(CDCl3, 298 K): δ 7.55 (dd, 2H, JHH = 7.4 Hz, JHH = 2.1 Hz, arom), 7.42–7.33 (m, 4H, arom), 

7.24–7.16 (m, 4H, arom), 7.07 (d, 2H, JHH = 7.9 Hz, arom), 7.01 (t, 1H, JHH = 7.4 Hz, arom), 

5.44 (d, 1H, JPH = 8.0 Hz, NH). 31P{1H} NMR (CDCl3, 298 K): δ 6.28 (s). 13C{1H} NMR (CDCl3, 

298 K): δ 147.84 (d, JPC = 9.3 Hz, arom-Cipso), 137.98 (d, JPC = 2.2 Hz, arom-Cipso), 130.12 (d, 

JPC = 1.4 Hz, arom-CH), 129.92 (d, JPC = 1.4 Hz, arom-CH), 129.33 (s, arom-CH), 128.41 (d, 
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JPC = 1.7 Hz, arom-Cipso), 126.50 (d, JPC = 1.9 Hz, arom-CH), 123.20 (s, arom-CH), 121.80 (d, 

JPC = 4.4 Hz, arom-CH), 119.56 (d, JPC = 6.6 Hz, arom-CH). 

2.1.5. Characterization of BPPO-NHtol 

Anal. calcd for C19H16NO3P (337.31 g mol−1,%): C, 67.65; H, 4.78; N, 4.15. Found (%): 

C, 67.40; H, 4.80; N, 4.12. M.p. (°C): 189. IR (KBr, cm−1): 3379 νNH, 1198 νP=O. 1H NMR 

(CDCl3, 298 K): δ 7.54 (dd, 2H, JHH = 7.1 Hz, JHH = 1.8 Hz, arom), 7.42–7.31 (m, 4H, arom), 

7.23 (d, 2H, JHH = 7.4 Hz, arom), 7.04–6.95 (m, 4H, arom), 5.45 (d, 1H, JPH = 7.6 Hz, NH), 

2.27 (s, 3H, CH3). 31P{1H} NMR (CDCl3, 298 K): δ 6.16 (s). 13C{1H} NMR (CDCl3, 298 K): δ 

147.95 (d, JPC = 9.5 Hz, arom-Cipso), 135.34 (d, JPC = 1.9 Hz, arom-Cipso), 132.74 (s, arom-Cipso), 

130.05 (d, JPC = 0.8 Hz, arom-CH), 129.86 (d, JPC = 0.9 Hz, arom-CH), 129.78 (s, arom-CH), 

128.46 (d, JPC = 1.5 Hz, arom-Cipso), 126.38 (d, JPC = 1.7 Hz, arom-CH), 121.83 (d, JPC = 4.4 Hz, 

arom-CH), 119.85 (d, JPC = 6.4 Hz, arom-CH), 20.66 (s, CH3). 

3. Results and Discussion 

According to the recently published patent [49], the conversion of BPPO is related 

phosphoramidates can be carried out in a single step by reacting the precursor with I2 in 

the presence of a suitable aliphatic or aromatic amine (amH), as depicted in Scheme 1. The 

compounds BPPO-NHButyl, BPPO-Nmorph, BPPO-NAcPz, BPPO-NHPh and BPPO-NHTol were 

isolated with yields comprised between 12% and 94% and high degree of purity. The low 

yields obtained in some cases are mainly attributable to work-up issues. With the excep-

tion of butylammonium iodide, the by-product [amH2]I was always recovered by filtra-

tion from the reaction mixture. It is worth noting that an alternative synthetic approach 

for the preparation of BPPO-Nmorph is already present in the literature [50]. 

 

Scheme 1. Synthesis of phosphoramidates from BPPO. 

The 1H NMR spectra of all the compounds showed the disappearance of the P-H res-

onance of BPPO, while the four multiplets due to the equivalent aromatic rings of the 

biphenyl moiety were maintained. Besides the aromatic resonances, the 1H NMR spec-

trum of BPPO-NHButyl in CDCl3 shows the superposition of multiplets between 3.05 and 

2.90 ppm assigned to the N-bonded hydrogen atom and the CH2 fragment. The other 

aliphatic resonances fall at 1.48, 1.31 and 0.88 ppm. The 13C{1H} NMR signals of the butyl 

chain fall in the 42–13 ppm range, and the one at 34.03 ppm exhibits a coupling constant 

of 5.5 Hz with the 31P nucleus, in agreement with the formation of the P-N bond. The 

presence of P-bonded morpholine in BPPO-Nmorph was highlighted by two multiplets at 

3.62 and 3.16 ppm, correlated to resonances in the 13C{1H} NMR spectrum at 66.98 and 

45.47 ppm. The 13C{1H} NMR signals are doublets thanks to the coupling with 31P. In the 
1H NMR spectrum of the comparable BPPO-NAcPz compound the four CH2 fragments of 

the piperazine heterocycle are all non-equivalent because of the different substituents at 

the nitrogen atoms and because of the lack of free rotation of the acetyl group around the 

N-C bond, that removes the equivalence of the two halves of the piperazine ring. The CH2 
1H NMR chemical shift values are 3.53, 3.44, 3.22 and 3.09 ppm, correlated to 13C{1H} NMR 
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resonances in the 47–41 ppm range. The acetyl substituent resonates at 2.08 ppm in the 1H 

NMR spectrum and at 169.17 and 21.30 ppm in the 13C {1H} NMR spectrum. The NMR 

spectra of BPPO-NHPh and BPPO-NHTol are similar, with the obvious differences related to 

the presence in the second case of the methyl substituent. The NH resonance is clearly 

observable in the 1H NMR spectrum at about 5.45 ppm, with JPH coupling constant close 

to 8 Hz. The 1H NMR spectra are shown in Figure 1. A single sharp resonance was 

observed in all the 31P{1H} NMR spectra between 13.5 and 9.5 ppm for the derivatives of 

aliphatic amines and around 6.2 ppm for BPPO-NHPh and BPPO-NHTol (Figure 2). 

 

Figure 1. 1H NMR spectra of the phoshoramidate derivatives (CDCl3, 298 K). 

 

Figure 2. 31P{1H} NMR spectra of the phoshoramidate derivatives (CDCl3, 298 K). 

The IR spectra show in all the cases the P=O stretching around 1200 cm−1. In some 

cases further diagnostic signals were detected, such as the νNH stretching above 3300 cm−1 
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for BPPO-NHButyl, BPPO-NHPh and BPPO-NHTol, or the νCO stretching band at 1646 cm−1 for 

BPPO-NAcPz. 

To conclude, in this communication we reported the straightforward synthesis of five 

phosphoramidates starting from BPPO, operating under mild conditions and avoiding 

the use of aggressive reactants. Most of the compounds here described are reported for 

the first time and they are currently under investigation as flame retardants in 

combination with various plastics. 

4. Patents 

The data provided in this work were obtained on the basis of the 2023 patent 

WO2023094526A1, entitled “Preparation process of P(=O)-heteroatom derivatives of 

dibenzooxaphosphacycles”, presented by our research group. 
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