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Abstract: The time-frequency analysis has garnered attention for research due to its applications
in studying non-stationary signals, revealing information often obscured by conventional time or
frequency domain analysis. This study aims to reduce the computational cost associated with large
dataset analysis using the smoothed pseudo Wigner-Ville distribution (WVD), a valuable time-
frequency tool for analyzing various signal data.. We used a 9000-sample acoustic signal from a
milling machine, sampled at 100 kHz, and filtered between 1 kHz to 8 kHz. Two approaches were
pursued: first, calculating the average WVD from equidistant time windows; second, reducing the
sampling rate by a factor of ‘k’ by creating an array where each ’nth’ element corresponds to the
‘k*nth’ element of the original signal. The mean WVD method distorted the time-frequency diagram
with middle-range frequencies, while the second approach preserved the WVD, even with significant
‘k’ factors, reducing analysis time significantly. Incorporating a redundant data elimination method
in the sampling rate reduction process markedly reduces analysis time.

Keywords: wigner ville; non stationary; time-frequency analysis

1. Introduction

Machine learning-based artificial intelligence systems are becoming increasingly im-
portant in monitoring conditions in manufacturing processes due to the possibilities of
automating manual processes and making real-time decisions based on data generated by
sensors. Following new industrial practices and the concept of Industry 4.0, such interven-
tion will ensure a smarter and automated manufacturing process, resulting in improved
quality and cost reduction [1–3].

Convolutional neural networks (CNNs) stand out as powerful tools for the tasks
mentioned above, particularly for image recognition and processing through deep learning
(DL) algorithms. These algorithms can be trained to recognize patterns indicating tool wear
onset, predict when a tool needs replacement, classify different levels of wear, and estimate
remaining useful life (RUL). However, technical challenge when using CNNs is related to
long sequences, such as those derived from monitoring a manufacturing process, which
can become a complex task requiring high computational demand. In the study conducted
by Wang and Oates [4], an approach for transforming time series data into images was
developed, enabling the extraction of features by CNN in time series analysis. The proposed
methodology includes two algorithms for transforming time series data, based on gramian
angular summation/difference fields (GASF/GADF) and Markov transition fields (MTF).
While the strategy of converting time series into images has proven effective, due to the
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aforementioned challenges, there is a need for tools that can overcome the limitations of
training with long sequences and provide greater clarity in interpreting their decisions.

Therefore, the aim of the present study is to assess the feasibility of using time-
frequency representations as a feature extraction tool from non-stationary signals, while
also providing the ability to correlate the tool condition with changes in the frequency
spectrum corresponding to the acoustic signal. The data analyzed in this work corresponds
to the study of the milling process. It is employed for the manufacturing of a wide variety
of parts, characterized by its ability to remove material from the surface of the workpiece,
giving it complex shapes and precise finishing. The machining process of parts inevitably
involves the wear of the milling cutter, resulting in a gradual loss of its cutting precision.
This degradation can lead to the production of parts with inadequate finishing or damage.
Hence, in order to enhance this operation’s quality, it is of great ambition to monitor the
preceding phenomenon. In this study, time series data based on acoustic emission signals
related to the milling tool wear were transformed into images using the Wigner-Ville
distribution (WVD), as employed by Schol [5], by means of two distinct computational
approaches, based on avareage WVD in equidistants time intervals, and also through
data sampling rate reduction. The time-frequency representation will be particularly
useful in examining the variable frequency content at different time intervals in the signal,
potentially providing additional insights into the level, intensity, and onset of tool wear.
Related approaches in the literature have used short-time Fourier transform (STFT) [6] and
wavelet transform (WT) [7]. However, the WVD method serves as an alternative not yet
reported within the scope of this study.

It is expected that the present study will contribute to overcoming the challenges
related to the need for tools capable of handling the limitations of training with long
sequential data and providing more clarity in interpreting results in the practical use of
CNNs. The results are also expected to contribute to the automation of the manufacturing
process and the optimization of tool life in machining operations, specifically focusing on
the milling process.

2. Material and Methods

Three ways to carry out the diminish of computational cost aforementioned were
proposed, which will be detailed in the following subtopics.

2.1. Dataset

The dataset taken as reference was obtained from the work of [8], which consists of a
MATLAB structure composed of acoustic emission signals with 9000 samples, obtained
from a sampling frequency of 100 kHz using the WD 925 sensor for monitoring purposes.
The experiments of the dataset were conducted on a milling machine for different speeds,
feeds, and depth of cut. The tool wear, VB, was also measured for each test series. For the
first two subsequent analysis, the signal was filtered by a band-pass filter at the band 5 to 7
kHz with the objective of easing the analysis.

2.2. Methodology of the Resulting Average Spectrum

The Wigner-Ville Distribution is a widely used time-frequency analysis tool for ex-
tracting features from non-stationary signals. One of the main reasons for its popularity
is highlighted by Scholl, who suggests that the WVD overcomes the spectral resolution
limitations of other time-frequency transforms by utilizing the concept of instantaneous
autocorrelation [9]. In this methodology, three sample windows were extracted from the
original signal, all of the same size, representing three different instants of the sampling:
the beginning, middle, and end of the milling process. From these three sub-signals, a
fourth one was generated following the relationship presented in the equation below:

ami =
a1i + a2i + a3i

3
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where ami, a1i, a2i, a3i are the i-th terms, respectively, of the final sub-series and the three
time windows taken from the original signal.

2.3. Methodology of Reducing the Sampling Frequency

In this approach to mitigate the computational cost of the WVD, a sub-series of the
original signal was generated in such a way that:

bi = k · ai

where bi, ai represent, respectively, the i-th term of the resulting signal and the original
signal. In the meantime, the resulting signal is a version of the original signal sampled at a
sampling frequency:

fb =
fa

k
where fb and fa are the respective sampling frequencies of the resulting signal and the
original, and k is the sampling frequency division factor.

2.4. Joint Analysis

In the particular case of the analysis taken in this subsection, the filter applied was a
low-pass filter with cut frequency of 40 kHz. The reason is to better simulate the research
conditions, since the dataset document claimed that the foregoing cut-frequency represents
the overall band of the acoustic emission signal. This filter also eliminates noise in higher
frequency components, as it was said in other sections.

It was tracked a joint analysis composed by first preprocessing the signal taking out
noise by applying the aforementioned low-pass filter, and then eliminating undesired
transient information, by selecting an interval of the original signal when the milling
process becomes stable, and then applying the aforesaid method of diminishing the sample
frequency.

For diminishing the sample frequency, as a result of the 40 kHz bandwidth and
following the Nyquist Criterion, the new one taken was 80 kHz, which means a division
factor of:

k = 1.25

This factor was obtained by discarding every sample whose position was a multiple
of five from the original signal.

3. Results and Dicussion
3.1. Methodology of the Resulting Average Spectrum

For the sake of simplicity, the following methods’ results will be shown for only one
signal from the dataset mentioned previously . The WVD of the signal, without any prior
treatment, is shown in the Figure 1:

3.2. Methodology of the Resulting Average Spectrum

The analysis of the average spectrum from 2000 and 3000 sample windows based on
the WVD is shown in Figure 2 below. In this figure, the horizontal axis represents time in
seconds, while the vertical axis represents the signal’s component frequency in Hz.
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(a) (b)

Figure 1. Wigner-Ville Distribution of the Signal. (a) For the band 4kHz to 7kHz. (b) For the full
signal band. Source: Author’s own work

(a) (b)

Figure 2. Mean spectrum for 2000 and 3000 sample windows. (a) WVD of the average spectrum
obtained from 2000 samples of the original signal. (b) WVD of the average spectrum obtained from
3000 samples of the original signal. Source: Author’s own work

Using the methodology of the average spectrum, the compilation time for the observed
plot was significantly shorter than that taken to produce Figure 1a. Furthermore, the signal’s
spectral density remains close to 5.5 kHz, as in the original plot. However, it is noteworthy
that no windowing time adopted was able to faithfully reproduce the original signal’s
spectrum. The reason for this mismatch between the spectra presented in Figure 2 and the
original spectrum is due to the multidimensional nature of the tool used. The calculation of
the average between the spectra of the adopted time windows resulted in the mixing of the
energy densities of the spectrum in these analyzed time intervals, resulting in distortions in
the final average spectrum that propagate throughout the temporal extension of the WVD.

3.3. Methodology of Reducing the Sampling Frequency

The compilation of spectra for this methodology took significantly less time than that
spent on the average spectrum analysis and notably yielded better results compared to
the method being compared, maintaining the signal’s spectrum even for a sample size
six times smaller than the original signal. However, it can be observed from Figure 3b
that the tool loses resolution with high values of k. This occurs as the sampling frequency
division (Fa) must still adhere to Nyquist’s Law, which dictates that Fa must be at least 2
times greater than the signal’s bandwidth. Since the original signal has a bandwidth of 40
kHz, the reduction in sampling frequency could not adopt values of the division factor k
large enough for a useful reduction in computational cost. In this scope, greater changes in
time analysis, using this approach, can only be achieved for lower frequency bands of the
signal.
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Figure 3. WVD obtained for different sampling frequency division factors k. (a) WVD for k = 4.
(b) WVD for k = 10. Source: Author’s own work

3.4. Joint Analysis

By analyzing the signal time-series plot , it can be observed that the moment where the
milling process stabilizes is approximately 20–70 ms. This interval corresponds for samples
number 2000 to 7000 of the signal.

Applying the original signal by a band-pass filter from 1–40 kHz, dividing the sample
rate by a factor of 1.25 and taking the aforementioned interval of the signal results in
Figure 4:

Figure 4. Wigner-Ville Distribution of the signal after joint analysis. Source: Author’s own work

Figure 4 is identical to Figure 1b, with the only difference being the time range. The
time taken to plot the former was about 5 s, while the latter took 75 s to be prepared. This
proves that the approach reported in this subsection is of great efficiency, and enhances
significantly the time of analysis without damaging the original information.

4. Conclusions

This research delved into the realm of time-frequency analysis, with a specific focus on
addressing the computational challenges associated with the analysis of large datasets. The
study harnessed the smoothed pseudo Wigner-Ville distribution (WVD) as a potent tool for
time-frequency analysis, utilizing a 9000-sample acoustic signal from a milling machine,
sampled at 100 kHz, and filtered between 1 kHz to 8 kHz.

Three distinct approaches were explored to mitigate the computational cost of this
analysis. The first approach involved calculating the average WVD from equidistant time
windows, but it was observed that this method led to a distortion of the time-frequency
diagram, particularly in relation to middle-range frequencies. The second approach, which
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involved reducing the sampling rate by a factor of ’k’ through an array-based transforma-
tion, proved to be a more promising solution. This method demonstrated the ability to
preserve the essential characteristics of the WVD even with significant ’k’ factors, which
significantly reduced the analysis time. The third approach consisted in the incorporation
of a redundant data elimination method in the sampling rate reduction process to further
enhance the efficiency of the analysis.

In essence, this research has showcased the feasibility of employing a joint preprocess-
ing of the signal, consisting in incorporating noise and transient data elimination to the
second method formerly presented, as a valuable technique for reducing the computational
burden associated with large dataset analysis in the realm of time-frequency analysis. By
offering a pragmatic solution that balances computational efficiency with the preservation
of analytical fidelity, this study paves the way for more efficient and expedited analysis of
non-stationary signals in various applications. The findings of this research can be instru-
mental in enhancing the practicality and utility of time-frequency analysis for researchers
and practitioners working with substantial datasets in diverse fields.

Data Availability Statement: Publicly available dataset was analyzed in this study. This data can be
found here: [https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/
pcoe/pcoe-data-set-repository/]. 3. Milling. (accessed on).
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