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Abstract: The goal of this paper is to evaluate various compact CNN architectures for object 11 
recognition trained on a small resource-constrained platform, the NVIDIA Jetson Xavier. Rigorous 12 
experimentation identifies the best compact CNN models that balance accuracy and speed on em- 13 
bedded IoT devices. The key objectives are to analyze resource usage such as CPU/GPU and RAM 14 
used to train models, the performance of the CNNs, identify trade-offs, and find optimized deep 15 
learning solutions tailored for training and real-time inference on edge devices with tight resource 16 
constraints. 17 
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1. Introduction 21 

Nowadays, artificial intelligence (AI) has become very prominent and impactful 22 
owing to its proficiency in accomplishing a wide variety of tasks with high levels of ef- 23 
fectiveness and efficiency. Some of the areas where AI has demonstrated its capabilities 24 
include, but are not restricted to, visual recognition tasks like image classification, object 25 
detection, sensor data and natural language processing. Deep learning is an advanced 26 
sub-discipline of machine learning that emphasizes refining artificial neural networks 27 
with multiple layers to apprehend intricate representations of data. It can learn useful 28 
features from raw data without manual feature engineering. In contrast, the advent of 29 
Internet of Things devices having inbuilt sensors opens novel prospects for implement- 30 
ing convolutional neural networks (CNNs) directly on resource-limited devices. How- 31 
ever, these devices have limited memory, storage, and computing power, making exten- 32 
sive, complex CNNs infeasible. Implementing compact CNNs with smaller models and 33 
computational needs on IoT devices enables localized capabilities like object recognition 34 
without relying on the cloud. This reduces latency while improving privacy and relia- 35 
bility. To facilitate model training and inference, several types of specialized hardware 36 
have emerged such as CPUs, graphics processing units (GPUs)/ tensor processing units 37 
(TPUs), and field-programmable gate arrays (FPGAs). 38 

Researchers have been investigating the training and inference performance of 39 
models in resource-constrained devices. Ajit et al. [1] provide a broader review of CNNs 40 
without directly addressing the impact of training using different hardware. Neverthe- 41 
less, the paper offers valuable context regarding the algorithmic steps and applications of 42 
CNNs across various fields. Recent studies [2] indicate that both GPU and TPU signifi- 43 
cantly improved the performance and accuracy of CNN models, with TPU outperform- 44 
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ing GPU in certain cases. This suggests that the choice of hardware can have an im- 1 
portant impact on model accuracy and overall performance. Other work focuses on GPU 2 
and TPU deployment for image classification tasks [3]. Only a few papers explore the use 3 
of the NVIDIA Jetson Xavier NX platform for deploying imaging applications. Among 4 
these, Jabłoński et al. [4] evaluate the performance of Jetson Xavier NX for real-time im- 5 
age processing for plasma diagnostics. The authors implement several image processing 6 
algorithms on the platform and evaluate their performance in terms of speed and accu- 7 
racy. They found that the platform is able to achieve good performance on the image 8 
processing tasks, and that it is well-suited for real-time applications due to its 9 
fast-processing speeds. Kortli et al. [5] propose a hybrid model that combines a CNN 10 
with a long short-term memory (LSTM) network for lane detection and implement and 11 
demonstrate the ability to achieve good performance for this task on the Jetson Xavier 12 
NX.  13 

The goal of this paper is to evaluate various compact CNN architectures for object 14 
recognition in images trained on the NVIDIA Jetson Xavier NX. The key objectives are to 15 
analyze resource usage such as CPU/GPU and RAM used to train models, the perfor- 16 
mance of the CNNs, identify trade-offs, and find optimized deep learning solutions tai- 17 
lored for training and real-time inferencing on devices with tight resource constraints. 18 

2. Materials and Methods 19 

2.1. NVIDIA Jetson Xavier Platform 20 

The NVIDIA Jetson Xavier NX [6] is a system-on-a-chip (SoC) developed by 21 
NVIDIA. It is designed for use in a wide range of applications, including autonomous 22 
machines, robotics, and edge computing. The Xavier NX is based on the NVIDIA Volta 23 
architecture and features a 6-core Arm Cortex-A57 processor, a 512-core NVIDIA Volta 24 
GPU, and a deep learning accelerator (DLA). It is designed to be highly energy efficient 25 
and has a small form factor, making it suitable for use in devices with limited space and 26 
power resources. The Xavier NX can deliver high performance for a range of tasks, in- 27 
cluding machine learning, image and video processing, and computer vision. It is tar- 28 
geted at developers and OEMs who are looking to build advanced, high-performance 29 
systems for a variety of applications. 30 

2.1.1. Setting up the NVIDIA Xavier NX board 31 

The process of installing NVIDIA SDK Manager and Jetpack [7], flashing an SD card, 32 
and installing an SSD drive while changing the root file system (rootfs) to the SSD in- 33 
volves a series of specific procedures.  34 

The first step is to download the NVIDIA SDK Manager from the NVIDIA SDK 35 
Manager download page. This step requires one to have an NVIDIA Developer account 36 
to access the download. Once the file has been downloaded, the terminal must be 37 
opened, and one must navigate to the directory where the file is saved. The permission of 38 
the file is then changed to make it executable with a specific command. The SDK Man- 39 
ager is then installed by running a particular command in the terminal. 40 

After the SDK Manager has been installed, it can be executed by typing ’sdkman- 41 
ager’ into the terminal and then logging in with the NVIDIA Developer account creden- 42 
tials. Within the SDK Manager, one must select the appropriate hardware configuration 43 
in the ’Target Hardware’ section. Then, the desired Jetpack version is selected in the 44 
’SDKs’ section. One must then follow the prompts to complete the installation process. 45 

Flashing the SD card is a task handled by the SDK Manager during the Jetpack in- 46 
stallation process, requiring the SD card to be connected to the host machine. If a manual 47 
flash of the SD card is needed, a tool like Etcher [8] can be utilized. One can download 48 
and install Etcher, select the image file they want to flash, select the SD card, and start the 49 
flashing process. 50 
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The installation of the SSD drive and the changing of the ‘rootfs’ to point to the SSD 1 
first necessitates physically connecting the SSD to the device. After this, the SSD must be 2 
formatted, which, in Linux, can be done using a specific command, replacing ’sdX’ with 3 
the appropriate device id. One is then guided through a series of prompts to create a new 4 
partition and format it. After the SSD has been formatted, it is mounted by running a 5 
specific command. The contents from the SD card are then copied to the SSD using the 6 
’rsync’ command. One then must edit the ’/boot/extlinux/extlinux.conf’ file on the SD 7 
card to point to the SSD, changing ’root=/dev/mmcblk0p1’ to ’root=/dev/sdX1’. The de- 8 
vice is then rebooted, after which the system should boot from the SSD. It is crucial to 9 
remember to replace ’sdX’ with the user’s SSD drive id and ’/dev/mmcblk0p1’ with the 10 
actual root partition. Additionally, it is of paramount importance that one backs up any 11 
vital data before proceeding with these steps and proceeds with caution when modifying 12 
system files or disk partitions. 13 

2.1.2. Deploying CNNs on NVIDIA Jetson Xavier NX 14 

Once the above steps are completed, one can begin creating and training machine 15 
learning models. Code development can be made more effective by installing the proper 16 
Integrated Development Environment (IDE) on the Jetson Xavier NX or by establishing a 17 
remote connection over SSH. Pytorch and Tensorflow are both available in the NVIDIA 18 
Jetson SDK. The PyTorch library was our choice for implementation. Moreover, we also 19 
use Torchvision, which is a PyTorch add-on library that provides datasets, model archi- 20 
tectures, and image transformations for computer vision, NumPy [10] for numerical op- 21 
erations, and Scikit Learn [28] that provides utilities for machine learning, including 22 
model evaluation metrics. The Pytorch profiler, torch.profiler, is also used for profiling 23 
model inference to analyze GPU/CPU usage and memory consumption. For maximizing 24 
performance and get the best out of the NVIDIA Xavier NX, we activated all 8 CPUs, 25 
enabling its 6 cores, which makes the board to consume 20 Watts of power. NVIDIA 26 
provides a script called ’jetson_clocks’. The script is provided by NVIDIA to optimize the 27 
board performance through the implementation of static maximum frequency settings 28 
for CPU, GPU, and EMC clocks. It is also recommended to activate fans, but we found 29 
that the temperatures are not high when the board is managed with the default values. 30 

2.2. Datasets for Experimentation 31 

In this paper, we focus on 2D object recognition in images. We chose two datasets 32 
for experimentation. The first one is CIFAR-10 [9], a well-known dataset in comput- 33 
er-vision for object recognition. It contains 60,000 32x32 color images, all of which contain 34 
one of the 10 distinct object classes. Each class is comprised of 6000 images, rendering a 35 
grand total of 10 unique object classes. The test batch contains 1000 randomly selected 36 
from each class. The second one, STL-10 [10] contains 96x96 color images across 10 classes 37 
with 500 training and 800 test images per class, totaling 5,000 labelled training images 38 
and 8,000 labelled test images. It is commonly employed to benchmark machine learning 39 
models and provides 800 test images per class compared to 1,000 for CIFAR-10, a mod- 40 
erate difference. As the STL-10 dataset has fewer labeled training images with higher 41 
resolution (32x32 for CIFAR-10 vs. 96x96 for STL-10), we wanted to observe how well 42 
models can generalize to different quantity of data and deal with different image sizes. 43 

2.3. Methodology 44 

A series of compact, lightweight CNN architectures, namely AlexNet, ShuffleNet v2, 45 
SqueezeNet, ResNet50 and MobileNet v2 are implemented and evaluated on the Jetson 46 
Xavier NX platform. The performance is compared when training the algorithms directly, 47 
from scratch on the platform or when using a transfer learning process.  48 

2.3.1. Tested Architectures 49 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 4 of 7 
 

 

We have chosen 5 compact architectures for testing: AlexNet [11] is comprised of 8 1 
layers with trainable parameters, including 5 convolutional layers paired with max 2 
pooling layers, followed by 3 fully connected layers. Each layer uses a ReLU activation 3 
function, except for the output layer. It also uses dropout layers, which prevent the 4 
model from overfitting. ShuffleNetV2 [12] is an efficient, lightweight CNN architecture 5 
designed for mobile and embedded vision applications with limited computational re- 6 
sources. Its architecture is composed of 50 layers and incorporates two operations: 7 
pointwise group convolution and channel shuffle, which significantly reduce computa- 8 
tional costs while still preserving accuracy. The architecture of SqueezeNet [13] is based on 9 
a shuffle operation that enables channel interleaving, reducing the number of computa- 10 
tions required by the network. ResNet [14] is a pioneering CNN architecture that utilizes 11 
residual connections to enable training of very deep networks. Skip connections allow 12 
gradients to flow directly to earlier layers. ResNet’s key components include residual 13 
blocks, stacked together to form the network, and a bottleneck design for deeper ver- 14 
sions. This architecture enabled the training of extremely deep networks, from 48 up to 15 
152 layers. In this paper we use Resnet50, which is a ResNet variant that has 50 layers. 16 
Finally, MobileNetV2 [15] uses depthwise and pointwise separable convolutions to reduce 17 
parameters and computations needed while incurring a slight decrease in performance. 18 
The architecture introduces inverted residual blocks, a modification of the standard re- 19 
sidual block found in the ResNet architectures, which allows efficient training on limited 20 
computation power. When training these models, we resized and normalized the input 21 
image size for each architecture and we shuffled the training datasets. We also applied 22 
data augmentation techniques, i.e. cropping and horizontal flipping. We froze the hidden 23 
layers to both avoid relearning generic features and improve training performance. 24 

2.3.2. Test Design and Performance Evaluation 25 

In order to train models and assess their performance, we used the two datasets in 26 
section 2.2. Each model is trained initially with 10 epochs and the number of epochs is 27 
increased to 30, 50, 60, 100, 150, and 200 epochs, for a fixed batch size of 64. The loss 28 
function is set as cross-entropy loss, and the optimization algorithm is Stochastic Gradi- 29 
ent Descent (SGD) with a learning rate of 0.001 and momentum of 0.9. For monitoring the 30 
training process, a script runs in background collecting CPU/GPU/RAM utilization from 31 
the board. Also, the loss is printed every 200 batches. The best model is identified by the 32 
highest F1-score with less computation cost. However, the time required to train, and 33 
accuracy of a model should also be considered depending on the use case. To test our 34 
model, we train from scratch directly on the board and also use transfer learning. The 35 
latter takes advantage of knowledge previously learned from models trained on large 36 
datasets, in our case, the ImageNet dataset [16]. Transfer learning reduces the time re- 37 
quired to train a model as it freezes the hidden layers that contain general knowledge (i.e. 38 
uses pre-trained weights obtained during learning on ImageNet dataset) and retrains 39 
only a limited number of layers, particularly those towards the output layer that contains 40 
the specific knowledge of the target task. It achieves a good performance quicker with 41 
reduced computation costs. After training, the model’s performance is evaluated on the 42 
test sets mentioned in section 2.2. The precision, recall, and F1-score for each model are 43 
calculated using the Scikit Learn library’s functions.  44 

3. Results 45 

Table 1 and 2 summarize the results we obtained on the two datasets using the five 46 
tested CNN architectures when trained from scratch and when using the pre-trained 47 
weights computed by transfer learning, with the best performance highlighted in bold. 48 
On the CIFAR-10 dataset, the AlexNet model trained from scratch improved its F-score 49 
from a modest 0.640 after only 10 epochs to an impressive F-score of 0.824 after 50 epochs 50 
and finally to an optimal 0.845 after 200 full epochs of training. Using transfer learning, 51 
the performance of the model increases significantly with fewer epochs, achieving an 52 
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F-score of 0.911 for 100 training epochs. The pre-trained ShuffleNet model achieved an 1 
F-score of 0.916 with only 10 epochs. Unlike the model trained from scratch, this model 2 
did not see significant improvement as the number of epochs increased and peaked at an 3 
F-score of 0.924 for 30 epochs. The SqueezeNet with transfer learning scored very well 4 
(an F-score of 0.902) with only 3 hours of training. The pre-trained ResNet50 achieved 5 
0.841 F-score with 30 epochs. On the other hand, MobileNetV2 showed a modest im- 6 
provement of 0.078 in F-score when using pre-trained weights vs. training from scratch, 7 
but in less than half training time. 8 

Table 1. Summary of best model performance on CIFAR-10. 9 

Model.  epochs Precision Recall F-Score  Time to train     

AlexNet 
Scratch 200 0.846 0.846 0.845 21h46min     

Pre-trained 100 0.912 0.911 0.911 10h47min     

ShuffleNet 
Scratch 100 0.740 0.741 0.741 13h02min     

Pre-trained 30 0.924 0.924 0.924 4h07min     

SqueezeNet 
Scratch 50 0.767 0.763 0.761 11h40min     

Pre-trained 30 0.902 0.902 0.902 3h     

Resnet50 
Scratch 100 0.655 0.647 0.649 38h15min     

Pre-trained 30 0.842 0.842 0.841 1h24min     

MobileNetV2 
Scratch 150 0.750 0.751 0.750 5h     

Pre-trained 100 0.828 0.830 0.828 2h12min     

 10 
Overall, the pre-trained models achieved an increased average F-score of 13.2% and 11 

an average decrease in computational time of 75.8%. For this dataset, the best perfor- 12 
mance is associated with ShuffleNet and the fastest model to train is Resnet50, but for a 13 
decrease in performance of 10.38%. The best compromise between performance and 14 
training time seems to be achieved by the pre-trained SqueezeNet, with a decrease of 15 
only 2.2% in performance with respect from the best model but for double the time with 16 
respect to the fastest model. 17 

As shown in Table 2, on the STL-10 dataset, consistent with the previous dataset, 18 
AlexNet is the one achieving the best performance when trained from scratch on the 19 
board. The pre-trained AlexNet and ResNet50 models only require very few epochs to 20 
achieve excellent results on this dataset. The pre-trained ShuffleNet scored almost twice 21 
better than its from scratch version with the same number of epochs. MobileNetV2 from 22 
scratch struggled to learn even after 150 epochs. For this dataset, the pre-trained models 23 
achieved an increased average F-score of 34.2% and an average decrease in computa- 24 
tional time of 73.4%. With an F-score of 0.995, the AlexNet with transfer learning achieves 25 
the best performance on this dataset, while the fastest model (one third of the time re- 26 
quired by AlexNet) is SqueezeNet for a decrease of 13.5% in performance.  27 

 28 

Table 2. Summary of best model performance on STL-10. 29 

Model  Epochs Precision Recall F-Score Time to train     

AlexNet 
Scratch 100 0.985 0.984 0.984 1h33min     

Pre-trained 30 0.995 0.995 0.995 30min     

ShuffleNet 
Scratch 100 0.475 0.475 0.474 1h20min     

Pre-trained 100 0.914 0.913 0.913 1h15min     

SqueezeNet 
Scratch 100 0.613 0.567 0.571 2h30min     

Pre-trained 10 0.862 0.862 0.861 8min     

Resnet50 
Scratch 200 0.449 0.452 0.464 3h42min     

Pre-trained 10 0.914 0.915 0.914 10min     

MobileNetV2 Scratch 150 0.328 0.276 0.257 33min     
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Pre-trained 150 0.786 0.781 0.781 32min     

 1 

4. Discussion and Conclusions 2 

As expected, the pre-trained models performed very well compared to their coun- 3 
terparts trained from scratch (average of 23.7% over the two datasets), as the base model 4 
trained on ImageNet is suitable for the task. Also, the pretrained model took less training 5 
time (average of 74.6% shorter over the two datasets). The pretrained AlexNet performed 6 
better (8.4% improvement) on STL-10 compared to CIFAR-10, with only 30 epochs in- 7 
stead of 100 epochs on CIFAR-10. The same stays true for the counterpart trained from 8 
scratch, i.e., a 13.9 % improvement on CIFAR for half the training epochs. This suggests 9 
that AlexNet can learn well with fewer images but with higher resolution samples. The 10 
pretrained ShuffleNet performed well on CIFAR-10 with only 30 epochs and on STL-10 11 
took more time (100 epochs) to achieve an F-score greater than 0.90. The ShuffleNet 12 
model trained from scratch obtained subpar performance (less than 0.5) on STL-10, sug- 13 
gesting that the model struggles with less data. SqueezeNet achieved an F-score of 0.861 14 
with only 10 epochs on the STL-10 dataset and the performance didn’t improve with 15 
more epochs. However, it achieves an F-score of 0.902 with 30 epochs on CIFAR-10. Sim- 16 
ilar to ShuffleNet, the SqueezeNet model trained from scratch obtained a low perfor- 17 
mance (0.57). This implies that SqueezeNet requires more data to increase performance. 18 
ResNet50 achieves an F-score of 0.914 with only 10 epochs on the STL-10 dataset but only 19 
scores 0.842 with 30 epochs on CIFAR-10. Like AlexNet, ResNet50 does well with few 20 
data but with higher resolution images. MobileNetV2 did not show a big discrepancy in 21 
terms of F-score across the two datasets, performing slightly better (4% improvement) on 22 
the CIFAR-10 dataset with 50 fewer epochs. 23 

As previously mentioned, the best performing model on the CIFAR-10 dataset was 24 
the pre-trained ShuffleNet trained on 30 epochs with an F-score of 0.924, whereas the 25 
pre-trained AlexNet model achieved an F-score of 0.995 on the STL-10 dataset when 26 
trained with 30 epochs. On average, ShuffleNet achieved an F-score of 0.918 over the two 27 
datasets, whereas AlexNet achieved 0.953. Even though AlexNet scored slightly better 28 
than ShuffleNet, the training time is another determining factor. On average, ShuffleNet 29 
only needed 2h41min to achieve good performance on both datasets, while AlexNet took 30 
5h30min, making ShuffleNet the preferred model. Regarding the speed training, the 31 
pre-trained ResNet50 model was the fastest to train on CIFAR-10, taking 1h24min to ob- 32 
tain an F-score of 0.841, which is approximately half the time. SqueezeNet, the second 33 
fastest model, took 3h to achieve an F-score of 0.902 on CIFAR-10. On STL-10, the 34 
pre-trained SqueezeNet was the fastest, showing an F-score of 0.861 in 8 minutes. On the 35 
other hand, the pretrained ResNet50 model took only two extra minutes (10 minutes to- 36 
tal) to reach an impressive F-score of 0.914. 37 

It is worth mentioning that during the training time, Jetson Xavier NX was overall 38 
extremely efficient in terms of resource utilization, using almost 100% of CPU, GPU, and 39 
RAM available. 40 

The primary limitations encountered while training CNNs on the NVIDIA Xavier 41 
NX board stemmed from the constrained memory resources available. We encountered 42 
some challenges while training larger models such as VGG-11 and VGG-19 on CIFAR-10 43 
with the container repeatedly exiting due to out-of-memory errors. After several at- 44 
tempts, we managed to find an appropriate batch size that works for these models. While 45 
the Xavier NX platform enables training in many moderate CNN architectures, memory 46 
constraints impose clear limits on model and dataset scale versus high-end GPUs or 47 
cloud-based accelerators with abundant RAM. In summary, RAM availability represents 48 
the primary bottleneck for more advanced deep learning tasks on this embedded hard- 49 
ware. In our future work we will be exploring alternative optimizers and loss functions 50 
that could potentially improve convergence speed, model performance, and robustness. 51 
Additionally, leveraging hardware-specific libraries such as Nvidia’s TensorRT could 52 
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also improve inference performance on the Xavier NX via strategies tailored to the GPU 1 
architecture. 2 
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