

Eng. Proc. 2023, 5, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/engproc

Proceeding Paper 1

Evaluating Compact Convolutional Neural Networks for Object 2

Recognition using Sensor Data on Resource-Constrained De- 3

vices † 4

Icaro Camelo 1,* and Ana-Maria Cretu 1 5

1 Department of Computer Science and Engineering, University of Quebec in Outaouais, Gatineau, QC, 6
Canada 7

* Correspondence: veri02@uqo.ca (I.C.); ana-maria.cretu@uqo.ca (A-M.C.); 8
† Presented at the 10th International Electronic Conference on Sensors and Applications, 15–30 November 9

2023; Available online: https://ecsa-10.sciforum.net/. 10

Abstract: The goal of this paper is to evaluate various compact CNN architectures for object 11
recognition trained on a small resource-constrained platform, the NVIDIA Jetson Xavier. Rigorous 12
experimentation identifies the best compact CNN models that balance accuracy and speed on em- 13
bedded IoT devices. The key objectives are to analyze resource usage such as CPU/GPU and RAM 14
used to train models, the performance of the CNNs, identify trade-offs, and find optimized deep 15
learning solutions tailored for training and real-time inference on edge devices with tight resource 16
constraints. 17

Keywords: machine learning; compact convolutional networks; object recognition re- 18
source-constraint devices; IoT; sensor data processing 19
 20

1. Introduction 21

Nowadays, artificial intelligence (AI) has become very prominent and impactful 22
owing to its proficiency in accomplishing a wide variety of tasks with high levels of ef- 23
fectiveness and efficiency. Some of the areas where AI has demonstrated its capabilities 24
include, but are not restricted to, visual recognition tasks like image classification, object 25
detection, sensor data and natural language processing. Deep learning is an advanced 26
sub-discipline of machine learning that emphasizes refining artificial neural networks 27
with multiple layers to apprehend intricate representations of data. It can learn useful 28
features from raw data without manual feature engineering. In contrast, the advent of 29
Internet of Things devices having inbuilt sensors opens novel prospects for implement- 30
ing convolutional neural networks (CNNs) directly on resource-limited devices. How- 31
ever, these devices have limited memory, storage, and computing power, making exten- 32
sive, complex CNNs infeasible. Implementing compact CNNs with smaller models and 33
computational needs on IoT devices enables localized capabilities like object recognition 34
without relying on the cloud. This reduces latency while improving privacy and relia- 35
bility. To facilitate model training and inference, several types of specialized hardware 36
have emerged such as CPUs, graphics processing units (GPUs)/ tensor processing units 37
(TPUs), and field-programmable gate arrays (FPGAs). 38

Researchers have been investigating the training and inference performance of 39
models in resource-constrained devices. Ajit et al. [1] provide a broader review of CNNs 40
without directly addressing the impact of training using different hardware. Neverthe- 41
less, the paper offers valuable context regarding the algorithmic steps and applications of 42
CNNs across various fields. Recent studies [2] indicate that both GPU and TPU signifi- 43
cantly improved the performance and accuracy of CNN models, with TPU outperform- 44

Citation: Camelo, I.; Cretu, A.-M.

Evaluating Compact Convolutional

Neural Networks for Object Recog-

nition using Sensor Data on Re-

source-Constrained Devices. 2023,

5, x. https://doi.org/10.3390/xxxxx

Published: 15 November 2023

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Eng. Proc. 2023, 5, x FOR PEER REVIEW 2 of 7

ing GPU in certain cases. This suggests that the choice of hardware can have an im- 1
portant impact on model accuracy and overall performance. Other work focuses on GPU 2
and TPU deployment for image classification tasks [3]. Only a few papers explore the use 3
of the NVIDIA Jetson Xavier NX platform for deploying imaging applications. Among 4
these, Jabłoński et al. [4] evaluate the performance of Jetson Xavier NX for real-time im- 5
age processing for plasma diagnostics. The authors implement several image processing 6
algorithms on the platform and evaluate their performance in terms of speed and accu- 7
racy. They found that the platform is able to achieve good performance on the image 8
processing tasks, and that it is well-suited for real-time applications due to its 9
fast-processing speeds. Kortli et al. [5] propose a hybrid model that combines a CNN 10
with a long short-term memory (LSTM) network for lane detection and implement and 11
demonstrate the ability to achieve good performance for this task on the Jetson Xavier 12
NX. 13

The goal of this paper is to evaluate various compact CNN architectures for object 14
recognition in images trained on the NVIDIA Jetson Xavier NX. The key objectives are to 15
analyze resource usage such as CPU/GPU and RAM used to train models, the perfor- 16
mance of the CNNs, identify trade-offs, and find optimized deep learning solutions tai- 17
lored for training and real-time inferencing on devices with tight resource constraints. 18

2. Materials and Methods 19

2.1. NVIDIA Jetson Xavier Platform 20

The NVIDIA Jetson Xavier NX [6] is a system-on-a-chip (SoC) developed by 21
NVIDIA. It is designed for use in a wide range of applications, including autonomous 22
machines, robotics, and edge computing. The Xavier NX is based on the NVIDIA Volta 23
architecture and features a 6-core Arm Cortex-A57 processor, a 512-core NVIDIA Volta 24
GPU, and a deep learning accelerator (DLA). It is designed to be highly energy efficient 25
and has a small form factor, making it suitable for use in devices with limited space and 26
power resources. The Xavier NX can deliver high performance for a range of tasks, in- 27
cluding machine learning, image and video processing, and computer vision. It is tar- 28
geted at developers and OEMs who are looking to build advanced, high-performance 29
systems for a variety of applications. 30

2.1.1. Setting up the NVIDIA Xavier NX board 31

The process of installing NVIDIA SDK Manager and Jetpack [7], flashing an SD card, 32
and installing an SSD drive while changing the root file system (rootfs) to the SSD in- 33
volves a series of specific procedures. 34

The first step is to download the NVIDIA SDK Manager from the NVIDIA SDK 35
Manager download page. This step requires one to have an NVIDIA Developer account 36
to access the download. Once the file has been downloaded, the terminal must be 37
opened, and one must navigate to the directory where the file is saved. The permission of 38
the file is then changed to make it executable with a specific command. The SDK Man- 39
ager is then installed by running a particular command in the terminal. 40

After the SDK Manager has been installed, it can be executed by typing ’sdkman- 41
ager’ into the terminal and then logging in with the NVIDIA Developer account creden- 42
tials. Within the SDK Manager, one must select the appropriate hardware configuration 43
in the ’Target Hardware’ section. Then, the desired Jetpack version is selected in the 44
’SDKs’ section. One must then follow the prompts to complete the installation process. 45

Flashing the SD card is a task handled by the SDK Manager during the Jetpack in- 46
stallation process, requiring the SD card to be connected to the host machine. If a manual 47
flash of the SD card is needed, a tool like Etcher [8] can be utilized. One can download 48
and install Etcher, select the image file they want to flash, select the SD card, and start the 49
flashing process. 50

Eng. Proc. 2023, 5, x FOR PEER REVIEW 3 of 7

The installation of the SSD drive and the changing of the ‘rootfs’ to point to the SSD 1
first necessitates physically connecting the SSD to the device. After this, the SSD must be 2
formatted, which, in Linux, can be done using a specific command, replacing ’sdX’ with 3
the appropriate device id. One is then guided through a series of prompts to create a new 4
partition and format it. After the SSD has been formatted, it is mounted by running a 5
specific command. The contents from the SD card are then copied to the SSD using the 6
’rsync’ command. One then must edit the ’/boot/extlinux/extlinux.conf’ file on the SD 7
card to point to the SSD, changing ’root=/dev/mmcblk0p1’ to ’root=/dev/sdX1’. The de- 8
vice is then rebooted, after which the system should boot from the SSD. It is crucial to 9
remember to replace ’sdX’ with the user’s SSD drive id and ’/dev/mmcblk0p1’ with the 10
actual root partition. Additionally, it is of paramount importance that one backs up any 11
vital data before proceeding with these steps and proceeds with caution when modifying 12
system files or disk partitions. 13

2.1.2. Deploying CNNs on NVIDIA Jetson Xavier NX 14

Once the above steps are completed, one can begin creating and training machine 15
learning models. Code development can be made more effective by installing the proper 16
Integrated Development Environment (IDE) on the Jetson Xavier NX or by establishing a 17
remote connection over SSH. Pytorch and Tensorflow are both available in the NVIDIA 18
Jetson SDK. The PyTorch library was our choice for implementation. Moreover, we also 19
use Torchvision, which is a PyTorch add-on library that provides datasets, model archi- 20
tectures, and image transformations for computer vision, NumPy [10] for numerical op- 21
erations, and Scikit Learn [28] that provides utilities for machine learning, including 22
model evaluation metrics. The Pytorch profiler, torch.profiler, is also used for profiling 23
model inference to analyze GPU/CPU usage and memory consumption. For maximizing 24
performance and get the best out of the NVIDIA Xavier NX, we activated all 8 CPUs, 25
enabling its 6 cores, which makes the board to consume 20 Watts of power. NVIDIA 26
provides a script called ’jetson_clocks’. The script is provided by NVIDIA to optimize the 27
board performance through the implementation of static maximum frequency settings 28
for CPU, GPU, and EMC clocks. It is also recommended to activate fans, but we found 29
that the temperatures are not high when the board is managed with the default values. 30

2.2. Datasets for Experimentation 31

In this paper, we focus on 2D object recognition in images. We chose two datasets 32
for experimentation. The first one is CIFAR-10 [9], a well-known dataset in comput- 33
er-vision for object recognition. It contains 60,000 32x32 color images, all of which contain 34
one of the 10 distinct object classes. Each class is comprised of 6000 images, rendering a 35
grand total of 10 unique object classes. The test batch contains 1000 randomly selected 36
from each class. The second one, STL-10 [10] contains 96x96 color images across 10 classes 37
with 500 training and 800 test images per class, totaling 5,000 labelled training images 38
and 8,000 labelled test images. It is commonly employed to benchmark machine learning 39
models and provides 800 test images per class compared to 1,000 for CIFAR-10, a mod- 40
erate difference. As the STL-10 dataset has fewer labeled training images with higher 41
resolution (32x32 for CIFAR-10 vs. 96x96 for STL-10), we wanted to observe how well 42
models can generalize to different quantity of data and deal with different image sizes. 43

2.3. Methodology 44

A series of compact, lightweight CNN architectures, namely AlexNet, ShuffleNet v2, 45
SqueezeNet, ResNet50 and MobileNet v2 are implemented and evaluated on the Jetson 46
Xavier NX platform. The performance is compared when training the algorithms directly, 47
from scratch on the platform or when using a transfer learning process. 48

2.3.1. Tested Architectures 49

Eng. Proc. 2023, 5, x FOR PEER REVIEW 4 of 7

We have chosen 5 compact architectures for testing: AlexNet [11] is comprised of 8 1
layers with trainable parameters, including 5 convolutional layers paired with max 2
pooling layers, followed by 3 fully connected layers. Each layer uses a ReLU activation 3
function, except for the output layer. It also uses dropout layers, which prevent the 4
model from overfitting. ShuffleNetV2 [12] is an efficient, lightweight CNN architecture 5
designed for mobile and embedded vision applications with limited computational re- 6
sources. Its architecture is composed of 50 layers and incorporates two operations: 7
pointwise group convolution and channel shuffle, which significantly reduce computa- 8
tional costs while still preserving accuracy. The architecture of SqueezeNet [13] is based on 9
a shuffle operation that enables channel interleaving, reducing the number of computa- 10
tions required by the network. ResNet [14] is a pioneering CNN architecture that utilizes 11
residual connections to enable training of very deep networks. Skip connections allow 12
gradients to flow directly to earlier layers. ResNet’s key components include residual 13
blocks, stacked together to form the network, and a bottleneck design for deeper ver- 14
sions. This architecture enabled the training of extremely deep networks, from 48 up to 15
152 layers. In this paper we use Resnet50, which is a ResNet variant that has 50 layers. 16
Finally, MobileNetV2 [15] uses depthwise and pointwise separable convolutions to reduce 17
parameters and computations needed while incurring a slight decrease in performance. 18
The architecture introduces inverted residual blocks, a modification of the standard re- 19
sidual block found in the ResNet architectures, which allows efficient training on limited 20
computation power. When training these models, we resized and normalized the input 21
image size for each architecture and we shuffled the training datasets. We also applied 22
data augmentation techniques, i.e. cropping and horizontal flipping. We froze the hidden 23
layers to both avoid relearning generic features and improve training performance. 24

2.3.2. Test Design and Performance Evaluation 25

In order to train models and assess their performance, we used the two datasets in 26
section 2.2. Each model is trained initially with 10 epochs and the number of epochs is 27
increased to 30, 50, 60, 100, 150, and 200 epochs, for a fixed batch size of 64. The loss 28
function is set as cross-entropy loss, and the optimization algorithm is Stochastic Gradi- 29
ent Descent (SGD) with a learning rate of 0.001 and momentum of 0.9. For monitoring the 30
training process, a script runs in background collecting CPU/GPU/RAM utilization from 31
the board. Also, the loss is printed every 200 batches. The best model is identified by the 32
highest F1-score with less computation cost. However, the time required to train, and 33
accuracy of a model should also be considered depending on the use case. To test our 34
model, we train from scratch directly on the board and also use transfer learning. The 35
latter takes advantage of knowledge previously learned from models trained on large 36
datasets, in our case, the ImageNet dataset [16]. Transfer learning reduces the time re- 37
quired to train a model as it freezes the hidden layers that contain general knowledge (i.e. 38
uses pre-trained weights obtained during learning on ImageNet dataset) and retrains 39
only a limited number of layers, particularly those towards the output layer that contains 40
the specific knowledge of the target task. It achieves a good performance quicker with 41
reduced computation costs. After training, the model’s performance is evaluated on the 42
test sets mentioned in section 2.2. The precision, recall, and F1-score for each model are 43
calculated using the Scikit Learn library’s functions. 44

3. Results 45

Table 1 and 2 summarize the results we obtained on the two datasets using the five 46
tested CNN architectures when trained from scratch and when using the pre-trained 47
weights computed by transfer learning, with the best performance highlighted in bold. 48
On the CIFAR-10 dataset, the AlexNet model trained from scratch improved its F-score 49
from a modest 0.640 after only 10 epochs to an impressive F-score of 0.824 after 50 epochs 50
and finally to an optimal 0.845 after 200 full epochs of training. Using transfer learning, 51
the performance of the model increases significantly with fewer epochs, achieving an 52

Eng. Proc. 2023, 5, x FOR PEER REVIEW 5 of 7

F-score of 0.911 for 100 training epochs. The pre-trained ShuffleNet model achieved an 1
F-score of 0.916 with only 10 epochs. Unlike the model trained from scratch, this model 2
did not see significant improvement as the number of epochs increased and peaked at an 3
F-score of 0.924 for 30 epochs. The SqueezeNet with transfer learning scored very well 4
(an F-score of 0.902) with only 3 hours of training. The pre-trained ResNet50 achieved 5
0.841 F-score with 30 epochs. On the other hand, MobileNetV2 showed a modest im- 6
provement of 0.078 in F-score when using pre-trained weights vs. training from scratch, 7
but in less than half training time. 8

Table 1. Summary of best model performance on CIFAR-10. 9

Model. epochs Precision Recall F-Score Time to train

AlexNet
Scratch 200 0.846 0.846 0.845 21h46min

Pre-trained 100 0.912 0.911 0.911 10h47min

ShuffleNet
Scratch 100 0.740 0.741 0.741 13h02min

Pre-trained 30 0.924 0.924 0.924 4h07min

SqueezeNet
Scratch 50 0.767 0.763 0.761 11h40min

Pre-trained 30 0.902 0.902 0.902 3h

Resnet50
Scratch 100 0.655 0.647 0.649 38h15min

Pre-trained 30 0.842 0.842 0.841 1h24min

MobileNetV2
Scratch 150 0.750 0.751 0.750 5h

Pre-trained 100 0.828 0.830 0.828 2h12min

 10
Overall, the pre-trained models achieved an increased average F-score of 13.2% and 11

an average decrease in computational time of 75.8%. For this dataset, the best perfor- 12
mance is associated with ShuffleNet and the fastest model to train is Resnet50, but for a 13
decrease in performance of 10.38%. The best compromise between performance and 14
training time seems to be achieved by the pre-trained SqueezeNet, with a decrease of 15
only 2.2% in performance with respect from the best model but for double the time with 16
respect to the fastest model. 17

As shown in Table 2, on the STL-10 dataset, consistent with the previous dataset, 18
AlexNet is the one achieving the best performance when trained from scratch on the 19
board. The pre-trained AlexNet and ResNet50 models only require very few epochs to 20
achieve excellent results on this dataset. The pre-trained ShuffleNet scored almost twice 21
better than its from scratch version with the same number of epochs. MobileNetV2 from 22
scratch struggled to learn even after 150 epochs. For this dataset, the pre-trained models 23
achieved an increased average F-score of 34.2% and an average decrease in computa- 24
tional time of 73.4%. With an F-score of 0.995, the AlexNet with transfer learning achieves 25
the best performance on this dataset, while the fastest model (one third of the time re- 26
quired by AlexNet) is SqueezeNet for a decrease of 13.5% in performance. 27

 28

Table 2. Summary of best model performance on STL-10. 29

Model Epochs Precision Recall F-Score Time to train

AlexNet
Scratch 100 0.985 0.984 0.984 1h33min

Pre-trained 30 0.995 0.995 0.995 30min

ShuffleNet
Scratch 100 0.475 0.475 0.474 1h20min

Pre-trained 100 0.914 0.913 0.913 1h15min

SqueezeNet
Scratch 100 0.613 0.567 0.571 2h30min

Pre-trained 10 0.862 0.862 0.861 8min

Resnet50
Scratch 200 0.449 0.452 0.464 3h42min

Pre-trained 10 0.914 0.915 0.914 10min

MobileNetV2 Scratch 150 0.328 0.276 0.257 33min

Eng. Proc. 2023, 5, x FOR PEER REVIEW 6 of 7

Pre-trained 150 0.786 0.781 0.781 32min

 1

4. Discussion and Conclusions 2

As expected, the pre-trained models performed very well compared to their coun- 3
terparts trained from scratch (average of 23.7% over the two datasets), as the base model 4
trained on ImageNet is suitable for the task. Also, the pretrained model took less training 5
time (average of 74.6% shorter over the two datasets). The pretrained AlexNet performed 6
better (8.4% improvement) on STL-10 compared to CIFAR-10, with only 30 epochs in- 7
stead of 100 epochs on CIFAR-10. The same stays true for the counterpart trained from 8
scratch, i.e., a 13.9 % improvement on CIFAR for half the training epochs. This suggests 9
that AlexNet can learn well with fewer images but with higher resolution samples. The 10
pretrained ShuffleNet performed well on CIFAR-10 with only 30 epochs and on STL-10 11
took more time (100 epochs) to achieve an F-score greater than 0.90. The ShuffleNet 12
model trained from scratch obtained subpar performance (less than 0.5) on STL-10, sug- 13
gesting that the model struggles with less data. SqueezeNet achieved an F-score of 0.861 14
with only 10 epochs on the STL-10 dataset and the performance didn’t improve with 15
more epochs. However, it achieves an F-score of 0.902 with 30 epochs on CIFAR-10. Sim- 16
ilar to ShuffleNet, the SqueezeNet model trained from scratch obtained a low perfor- 17
mance (0.57). This implies that SqueezeNet requires more data to increase performance. 18
ResNet50 achieves an F-score of 0.914 with only 10 epochs on the STL-10 dataset but only 19
scores 0.842 with 30 epochs on CIFAR-10. Like AlexNet, ResNet50 does well with few 20
data but with higher resolution images. MobileNetV2 did not show a big discrepancy in 21
terms of F-score across the two datasets, performing slightly better (4% improvement) on 22
the CIFAR-10 dataset with 50 fewer epochs. 23

As previously mentioned, the best performing model on the CIFAR-10 dataset was 24
the pre-trained ShuffleNet trained on 30 epochs with an F-score of 0.924, whereas the 25
pre-trained AlexNet model achieved an F-score of 0.995 on the STL-10 dataset when 26
trained with 30 epochs. On average, ShuffleNet achieved an F-score of 0.918 over the two 27
datasets, whereas AlexNet achieved 0.953. Even though AlexNet scored slightly better 28
than ShuffleNet, the training time is another determining factor. On average, ShuffleNet 29
only needed 2h41min to achieve good performance on both datasets, while AlexNet took 30
5h30min, making ShuffleNet the preferred model. Regarding the speed training, the 31
pre-trained ResNet50 model was the fastest to train on CIFAR-10, taking 1h24min to ob- 32
tain an F-score of 0.841, which is approximately half the time. SqueezeNet, the second 33
fastest model, took 3h to achieve an F-score of 0.902 on CIFAR-10. On STL-10, the 34
pre-trained SqueezeNet was the fastest, showing an F-score of 0.861 in 8 minutes. On the 35
other hand, the pretrained ResNet50 model took only two extra minutes (10 minutes to- 36
tal) to reach an impressive F-score of 0.914. 37

It is worth mentioning that during the training time, Jetson Xavier NX was overall 38
extremely efficient in terms of resource utilization, using almost 100% of CPU, GPU, and 39
RAM available. 40

The primary limitations encountered while training CNNs on the NVIDIA Xavier 41
NX board stemmed from the constrained memory resources available. We encountered 42
some challenges while training larger models such as VGG-11 and VGG-19 on CIFAR-10 43
with the container repeatedly exiting due to out-of-memory errors. After several at- 44
tempts, we managed to find an appropriate batch size that works for these models. While 45
the Xavier NX platform enables training in many moderate CNN architectures, memory 46
constraints impose clear limits on model and dataset scale versus high-end GPUs or 47
cloud-based accelerators with abundant RAM. In summary, RAM availability represents 48
the primary bottleneck for more advanced deep learning tasks on this embedded hard- 49
ware. In our future work we will be exploring alternative optimizers and loss functions 50
that could potentially improve convergence speed, model performance, and robustness. 51
Additionally, leveraging hardware-specific libraries such as Nvidia’s TensorRT could 52

Eng. Proc. 2023, 5, x FOR PEER REVIEW 7 of 7

also improve inference performance on the Xavier NX via strategies tailored to the GPU 1
architecture. 2

Author Contributions: Conceptualization, I.C. and A-M.C; methodology, I.C. and A-M.C; soft- 3
ware, I.C.; validation, I.C, and A.M.C.; formal analysis, I.C..; investigation, I.C.; resources, A-M.C; 4
data curation, I.C.; writing—original draft preparation, I.C.; writing—review and editing, I.C. and 5
A-M.C; visualization, I.C.; supervision, A-M.C; project administration, A-M.C; funding acquisition, 6
A-M.C. All authors have read and agreed to the published version of the manuscript. 7

Funding: This research was funded in part by the NSERC Discovery grant number 8
DDG-2020-00045 and by the NSERC UTILI grant number CREAT-2019-528123. 9

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 10
design of the study; in the collection, analyses, or interpretation of data; in the writing of the man- 11
uscript; or in the decision to publish the results. 12

References 13

1. A. Ajit, K. Acharya and A. Samanta, "A Review of Convolutional Neural Networks," 2020 International Conference on 14
Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 2020, pp. 1-5. 15

2. Ravikumar, A., Sriraman, H., Saketh, P. M. S., Lokesh, S., Karanam, A. Effect of neural network structure in accelerating per- 16
formance and accuracy of a convolutional neural network with gpu/tpu for image analytics. PeerJ Computer Science 8 (2022). 17

3. Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. Yolov4 : Optimal speed and accuracy of object detection. arXiv:2004.10934, 18
https://doi.org/10.48550/arXiv.2004.10934 (2004). 19

4. Jabłoński, B., Makowski, D., Perek, P., Nowakowski, P. N. V., Sitjes, A. P., Jakubowski, M., Gao, Y., and Winter, A. Evaluation 20
of Nvidia Xavier NX platform for real-time image processing for plasma diagnostics. Energies 15, no. 6: 2088. 21

5. Kortli, Y., Gabsi, S., Jridi, M., Voon, L. F. L. Y., and Atri, M. Hls-based hardware acceleration on the Zynq SoC : A real-time face 22
detection and recognition system. 2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Infor- 23
mation and Telecommunications, SETIT 2022 (2022), 61–64. 24

6. NVIDIA Jetson Xavier NX. Available online: 25
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/ (accessed on 27 September 2023). 26

7. NVIDIA SDK Manager and Jetpack. Available online: https://developer.nvidia.com/embedded/jetpack (accessed on 27 Sep- 27
tember 2023). 28

8. Etcher software. Available online: https://etcher.download/about/ (accessed on 27 September 2023). 29
9. The CIFAR-10 dataset. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 19 September 2023). 30
10. STL-10 dataset. Available online: https://cs.stanford.edu/~acoates/stl10/(accessed on 19 September 2023). 31
11. Krizhevsky A.; Sutskever I.; Hinton, G.E., 2017. ImageNet classification with deep convolutional neural networks. Commun. 32

ACM 60, 6 (June 2017), 84–90. https://doi.org/10.1145/3065386 33
12. X. Zhang, X. Zhou, M. Lin and J. Sun, "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices," 34

in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018 pp. 35
6848-6856. 36

13. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x 37
fewer parameters and < 0.5 MB model size. ArXiv preprint arXiv:1602.07360 (2016). 38

14. He, K.; X. Zhang, X.; S. Ren, S.; Sun, J. Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer 39
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90. 40

15. Sandler, M.; A. Howard, A.; Zhu, M., Zhmoginov, A.; aChen, L. -C. MobileNetV2: Inverted Residuals and Linear Bottlenecks, 41
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4510-4520, doi: 42
10.1109/CVPR.2018.00474. 43

16. Russakovsky, O., Deng, J., Su, H. et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 115, 211–252 44
(2015). 45

Disclaimer/ 46

https://arxiv.org/abs/2004.10934
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://developer.nvidia.com/embedded/jetpack

