
Citation: M, S.P.; T, N.G.; A, Y.

Dynamics and Bifurcation Analysis

of an Eco-Epidemiological Model in

Crowley-Martin Functional Response

with the Impact of Fear. Eng. Proc.

2023, 52, 0. https://doi.org/

Academic Editor: Firstname

Lastname

Published:

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Dynamics and Bifurcation Analysis of an Eco-Epidemiological
Model in Crowley-Martin Functional Response with the Impact
of Fear †

Siva Pradeep M 1,* , Nandha Gopal T 1 and Yasotha A 2

1 Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore,
Tamilnadu, India; nandhu792002@yahoo.co.in

2 United Institute of Technology, Coimbatore 641020, India; yasotha@uit.ac.in
* Correspondence: sivapradeep@rmv.ac.in
† Presented at the 4th International Electronic Conference on Applied Sciences, 27 October–10 November 2023;

Available online: https://asec2023.sciforum.net/.

Abstract: This article consists of a three-species food web model that has been developed by consid-
ering the interaction between susceptible prey, infected prey, and predator species. It is assumed that
susceptible prey species grow logistically in the absence of predators. It is assumed that predators
consume susceptible and infected prey and infected prey consumes susceptible prey. We consider the
effect of fear on susceptible prey due to predator species. Furthermore, the predator consumes its
prey in the form of Holling-type and Crowley-Martin-type interactions. Also, infected prey consumes
susceptible prey in the form of Holling-type interaction. The conditions of all biologically feasible
equilibrium points have been examined. The local stability of the systems around these equilibrium
points is investigated Furthermore, the occurrence of Hopf-bifurcation concerning fear $ of the system
has been investigated. Finally, we demonstrate some numerical simulation results to illustrate our
main analytical findings.

Keywords: infected prey; fear effect; Crowley-Martin; equilibrium point; stability; bifurcation

1. Introduction

Eco-epidemiological systems are used to investigate the dynamic connection between
predator and prey in one population or a population of susceptible and infected animals.
Mathematical models have become significant instruments in examining the flow and
manipulation of prevention. Since Kermack-Mckendrick’s pioneering work on SIRS [1],
epidemiological models have drawn a lot of interest from researchers. Ecology and epidemi-
ology are two distinct essential and significant areas of research. Lotka [2] and Volterra [3]
models, The first advance in current mathematical ecology can be examined using the
system of dynamical equations. It is referred to as the study of infection spread between
interacting organisms. A biological representation in terms of mathematical modelling
of communications among the populations density of predators and population density
of prey, called “functional response”. Modelling in biological systems There are numer-
ous of functional responses namely the Holling type [4,5], type of Beddington-DeAngelis
responses, type of Crowley-Martin responses; Arditi and Ginzburg’s [6] much more infor-
mation on predator-prey systems with Crowley-Martin functional responses has become
available in recent decades. In the recent era, some renowned authors [7]. They used
some functional responses such as type of Crowley-Martin functional response to make
the model system, more realistic and controllable in the eco-system. To the best of our
knowledge, no one has examined a three-species food web eco-epidemiological model with
Holling type I, II, and Crowley-Martin functional responses, along with the impact of fear
and disease on prey populations. Motivated by this fact, we explore a three-species food
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web eco-epidemiological model with Holling type I, Holling type II, and Crowley-Martin
functional responses to fear in susceptible prey populations due to predator species. The
occurrence of Hopf bifurcation analysis for the proposed model in relation to the existence
of the fear effect. The rest of the paper is structured as follows: In Section 2, we present
the mathematical analysis that has been investigated. Section 3 deals with the point of
equilibrium in boundary and their stability. In Section 4 we determine the existence of the
interior point of equilibria E∗(s∗, i∗, p∗) and investigate its local stability. The occurrence
of Hopf-bifurcation is shown in Section 5. Numerical simulations are examined for the
proposed model in Section 6. Section 7, which concludes the paper.

2. Model Formation

The framework demonstrates the relationship between the population density of prey
with infection. Which leads to the following structure of non-linear differential equations.
The suggested framework was applied to examine the non-linear population density of
susceptible, infected prey and predator biological model,

dS
dT = r1S(1− S+IK )− λIS − α1SP

(1+ζS)(1+ηP) ,
dI
dT = λIS − d1I − b1IP

a1+I ,
dP
dT = −d2P + cb1IP

a1+I + cα1SP
(1+ζS)(1+ηP) .

 (1)

In the above biological systems the susceptible prey population fear about the popukation
of predator. The reproduction rate of susceptible prey population will be decreases due to
fear on predator. Here the conditions are S(0) ≥ 0, I(0) ≥ 0 and P(0) ≥ 0 . The condition
for the fear effect is

F1($, p) =
1

1 + $p
(2)

This describes the level of fear in susceptible prey as a consequence of the predator. Here,
$ represents the quantity of fear. Given the epidemiological meaning of $, the following
condition is strongly acceptable:

$(0, p) = F1($, 0) = 1, lim$→ ∞F1($, p) = 0 = limp→ ∞F1($, p)

∂F1($, p)
∂$

< 0,
∂F1($, p)

∂p
< 0.

In this work we incorporate prey and the fear effect $. Then the system as follows.

dS
dT = r1S

1+FP (1−
S+I
K )− λIS − α1SP

(1+ζS)(1+ηP) ,
dI
dT = λIS − d1I − b1IP

a1+I ,
dP
dT = −d2P + cb1IP

a1+I + cα1SP
(1+ζS)(1+ηP) .

 (3)

The Table 1 displays specific biological meanings of the parameters.
In system (3) has many parameters with different units its inconvenient to solve the

systems (3), so in our convenient we reduce the system in to non-dimensional equations
using the following transformations Here, s = S

K , i = I
K , p = P

K , with non-dimensional
time t = λKT Now the (3) becomes,

ds
dt =

rs
1+$p (1− s− i)− is− sαp

(1+ζs)(1+ηp)
di
dt = is− di− θip

a+i
dp
dt = −δp + cθip

a+i +
cαsp

(1+ζs)(1+ηp) .

 (4)

here the conditions are, r = r1
λK , α = α1

λK , d = d1
λK , θ = b1

λK , δ = d2
λK , $ = F

K . According to the
preliminary criteria {s(0), i(0), p(0)} ≥ 0. The described over are in R3

+.
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Table 1. Specific biological meanings of the parameters (3).

Parameters Units Physiological Representation

S Components per unit area (tons) Population density of susceptible Prey
I Components per unit area (tons) Population density of prey with infection
P Components per unit area (tons) Population density of Predator
r1 Per day (T−1) Prey population densities growth rate
K Components per unit area (tons) The carrying
λ Per day (T−1) Infection rate
a Per day (T−1) Constant of Half-saturation

α1 Per day (T−1) Susceptible prey to predator consumption
b1 Per day (T−1) Capture rate by predator
c Per day (T−1) Conversion rate of prey to predator

d1, d2 Per day (T−1) Diseased prey and predator death rate
F Components per unit area (tons) Impact of fear

ζ, η Per day(T−1) Constant of feeding rate

3. The Existence Point of Equilibrium

The system (4) has three points of equilibrium and one endemic point of equilibrium.

• The E0(0, 0, 0) is the point of equilibrium, which is trivial,
• E1(

r−1
r , 0, 0) be the free of infection and free of predator point of equilibrium its exists

for r > 1.
• The absence of predator point of equilibrium is E2(ŝ, î, 0),

where, ŝ = d + 2, î = r(1−d−2)−1
r+1 , its exists for r(1− 2− d) > 1

• endemic equilibrium is E∗(s∗, i∗, p∗), where,i∗ = a(aδ+(δ−cα)s∗)
(cαs∗+(cθ−δ)(1+ζs∗)(1+ηp∗)) ,

p∗ = ac(s∗−d)(1+ζs∗)
(cαs∗+(cθ−δ)(1+ζs∗)) , and the s∗is the quadratic equation’s one and only positive

root, AS2 + BS + C = 0, where,

A = r(αc + θc− δ),B = (θc− δ)(ar− r) + αc((1 + $p)− r) + a(δ(1 + $p) + (δ− cα)r),

C = −a(r(1 + $p))(cθ − δ) + (cα(1 + $p)(d)− aδ((1 + $p) + r))).

If endemic equilibrium exist for δ > αc, r > 1, s∗ − d > (1+r)aδ
aα , and aδ + s∗(δ− αc).

4. Local Stability Analysis

I. We begin by determining the system’s (4) Jacobian matrix. J(E) =

 n11 n12 n13
n21 n22 n23
n31 n32 n33

.

Where,

n11 =
r

1 + $p
(1− 2s)− i

(
r

1 + $p
+ 1
)
− αp

(1 + ζs)2(1 + ηp)
, n12 = −s(

r
1 + $p

+ 1),

n13 =
prs

(1 + $p)2 (1− s− i)− αs
(1 + ζs)(1 + ηp)2 , n21 = i, n22 = s− d− aθp

(a + i)2 ,

n23 = − θi
(a + i)

, n31 =
cαp

(1 + ζs)2(1 + ηp)
, n32 =

acθp
(a + i)2 , n33 = −δ +

cθi
a + i

+
αcs

(1 + ζs)(1 + ηp)2 .

Theorem 1. • E0(0, 0, 0) is the trivial equilibrium point is locally stable if r < 1, otherwise
unstable.

• E1(
r−1

r , 0, 0) is an infection-free and predator-free equilibrium point is locally stable if cα < δ
and 1 > r(1− d− 2), otherwise unstable.
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Proof. The characteristic equation of the point of equilibrium E0 is (λ01 − (r− 1))(λ02 −
(−d − 2))(λ03 + δ) = 0, λ01 = r − 1, λ02 = −d − 2, λ03 = −δ. Here, λ02 < 0, λ03 < 0
E0(0, 0, 0) is the trivial equilibrium point. It is locally stable if r < 1 is otherwise unstable.

The characteristic equation of the point of equilibrium E1 is, (λ11 − ((1 − r)))
(λ12 − (1− d− 2− 1

r ))(λ13 − ( −α(r−1)
ra+(r−1) − δ)) = 0, λ11 = 1− r, λ12 = 1− d− 2− 1

r , λ13 =
−cα(r−1)
ra+(r−1) − δ. Here, E1(

r−1
r , 0, 0) is infection-free and the predator-free equilibrium point is

locally stable if cα < δ and 1 > r(1− d− 2), otherwise unstable.

Theorem 2. The equilibrium E2(ŝ, î, 0) which absence of predator is asymptotically stable if
δ > c(θ + α).

Proof. The matrix in the form of Jacobian at E2 is J(E2) =

 o11 o12 o13
o21 o22 o23
o31 o32 o33

,

where,

o11 = r(1− 2ŝ) + i(r + 1), o12 = (−1− r)ŝ, o13 = − αŝ
(1 + ζ ŝ)

, o21 = î, o22 = s− d− 2,

o23 = − θ î
a + î

, o31 = 0, o32 = 0, o33 =
cαŝ

1 + ζ ŝ
− δ +

cθ î
a + î

.

The E2 characteristic equation is, λ3 + T λ2 + Uλ + V = 0. Here,

T = −o11 − o33, U = −o21o12 + o33o11, V = o12o21o33.

According to the Routh-Hurwitz criterion, if and only if T ,V and T U −V are non-negative,
then the real parts are non-positive roots of the above characteristic equation. Now
T U − V = −o11(−o12o21 + o33(o33 + o11)). Now, the necessary criteria for o33 to be non-
positive is δ > c(α + θ). If the above condition in the Theorem is satisfied, the E2 is locally
asymptotically stable.

Theorem 3. The endemic or positive point of equilibrium E∗ is asymptotically stable.

Proof. The matrix in the form of Jacobian at E∗ is J(E∗) =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

, where,

r11 = − s∗(1− r + ar + (1 + r)i∗ + 2rs∗)
(1 + ζs∗)2(1 + ηp∗)

, r12 = −s∗(
r

1 + $p∗
+ 1),

r13 =
p∗rs∗

(1 + $p∗)2 (1− s∗ − i∗)− αs∗

(1 + ζs∗)(1 + ηp∗)
, r21 = i∗,

r22 =
aθp∗i∗

(a + i∗)2 , r23 =
θi∗

(a + i∗)
, r31 =

cαp∗

((1 + ζs∗)2(1 + ηp∗))
, r32 =

acθp∗

(a + i∗)2 , r33 = 0.

The E∗ characteristic equation is

λ3 +Fλ2 + Gλ +H = 0, (5)

here, F = −r11 − r33,G = −r21r12 + r22r11 − r13r31 + r23r32, H = r13(−r22r31 + r21r32) +
r23(r12r31 − r11r32). If F > 0,H > 0,FG − H > 0. According to the Routh-Hurwitz
criterion, if and only if F ,H,FG −H are non-negative, then the real parts are non-positive
roots of the above characteristic equation. The E∗ is locally asymptotically stable.
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5. Hopf-Bifurcation Analysis

The periodic solutions arise or depart due to changes in system parameters, which is
called Hopf-bifurication. The eigenvalues of the Jacobian matrix have a negative real part
with a complex conjugate, which means bifurication can occur.

Theorem 4. If the bifurcation parameter $ exceeds a critical point, the model (4) approaches Hope-
bifurcation. At $ = $∗, the following hope-bifurcation conditions arise:
1. A1($

∗)A($∗)−A3($
∗) = 0.

2. d
d f (Re(λ($)))|$=$∗ 6= 0 Here λ is the root of the parametric solution correlated with the

equilibrium interior point.

Proof. For $ = $∗, the characteristic (5) is in the form

(λ2($∗) +A2($
∗))(λ(∗) +A1($

∗)) = 0. (6)

This indicates that the roots of the preceding equation are ±i
√
A2($∗) and −A1($

∗). To
achieve the Hopf-bifurcation at $ = $∗ the following transversality criterion must be
fulfilled.

d
d$∗ (Re(λ($∗)))| 6= 0.

For $, the above Equation (6) has general roots

λ1 = r($) + is($), λ2 = r($)− is($), λ3 = −A1($).

Weather check the criteria d
d$∗ (Re(λ($∗)))| 6= 0. Let λ1 = r($) + is($) in the (6), we get

C($) + iD($) = 0. Where,

C($) = r3($) + r2($)A1($)− 3r($)s2($)− s2($)A1($) +A2($)r($) +A1($)A2($),

D($) = A2($)s($) + 2r($)s($)A1($) + 3r2($)s($) + s3($).

In order to satisfy the (6) we must have the variables C($) = 0 and D($) = 0, then
calculating C and D with regard to $.

dA
d$

= ς1($)r
′
($)− ς2($)s

′
($) + ς3($) = 0, (7)

dB
d$

= ς2($)r
′
($) + ς1($)s

′
($) + ς4($) = 0, (8)

where, ς1 = 3r2($) + 2r($)A1($) − 3s2($) + A2($), ς2 = 6r($)s($) + 2s($)a1($), ς3 =

r2($)A′1($) + s2($)A′1($) +A
′
2($)r($), ς4 = A′2($)s($) + 2r($)s($)A′1($). On multiplying

(7) by ς1($) and (8) by ς2($) respectively

r($)
′
= − ς1($)ς3($) + ς2($)ς4($)

ς1
2($) + ς22($)

. (9)

Substituting r($) = 0 and s($) =
√
A2($) at $ = $∗ on ς1($), ς2($), ς3($), and ς4($), we ob-

tain ς1($
∗) = −2A2(2∗), ς2($

∗) = 2A1($
∗)
√
A2($∗), : ς3($

∗) = A′3($∗)−A2($
∗)A′1($∗),

ς4($
∗) = A′2($∗)

√
A2$∗. The Equation (9), implies

r
′
($∗) =

A′3($∗)− (A1($
∗A2($

∗)))

2(A2($∗) +A2
1($
∗))

, (10)
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if A′3($∗)− (A1($
∗)A2($

∗))
′ 6= 0 which implies that d

d$∗ (Re(λ($∗)))| 6= 0, and λ3($
∗) =

−A1($
∗) 6= 0. Therefore the condition A′3($∗)− (A1($

∗)A2($
∗))

′ 6= 0 It has been guar-
anteed that the transversality criterion is satisfied, hence the model (4) has attained the
Hopf-bifurcation at $ = $∗.

6. Numerical Simulations

In this section, several numerical experiments on the system (4) are carried out to
verify the mathematical findings. The rate of fear $ is used as a control parameter. For the
specified fixed parameter values, the numerical simulation is carried out using the MAT-
LAB/MATHEMATICA software packages. With Runge-Kutta’s numerical scheme.Here
r = 0.2, α = 0.3, θ = 0.25, d = 0.1, δ = 0.1, ζ = 0.15, η = 0.15, $ = variable.

Bifurcation of Fear $

If $ = 0.3, then the model (4) is asymptotically stable about the positive point of
equilibria E∗(0.52861, 0.0917829, 0.204774) and other parameter values are the same. Now,
we increased the value of the bifurcation parameter, $ = 0.6, and the model (4) lost its
stability, arising a limit cycle at E∗(0.4899, 0.0920924, 0.220149). The model (4) then meets
the transversality criteria for (Re(λ($)))|$=$∗ = 0.002185 6= 0. The Figure 1 shows the
behavioural shifts of the system (4) at impact of fear, $ = 0.6.

Figure 1. The dynamical change of the model (4) at $ = 0.6.

7. Conclusions

We researched an eco-epidemiological system that included infection in the population
density of prey and fear in the susceptible prey population density as a result of predator
attacks on susceptible and diseased prey. In addition, each biologically possible point of
equilibrium can be represented (4). Furthermore, we investigated the suggested model’s
local stability (4) and observed the occurrence of Hopf-bifurcation, and we determined that
modifying the cost of fear $ has an instantaneous effect on the model’s stability (4). As a
result, Hopf-bifurcation constrained the developed analytical arguments around the E∗

simulation findings. In the proposed models, we deduce that the existence of dread has a
higher impact on stability shifts via the Hopf bifurcation.
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