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Abstract: Plant-soil sensing devices coupled with Artificial Intelligence autonomously collect and 1

process in situ plant phenotypic data. A challenge of this approach is the limited incorporation of 2

phenotype data into decision support systems designed to harness agricultural practices and forecast 3

plant behavior within the intricate context of genotype, environment, and management interactions 4

(G×E×M). To enhance the role of digital phenotyping in supporting Precision Agriculture, this paper 5

proposes a sensing network based on the Internet of Things. The developed system comprises three 6

modules: data collection, communication, and cloud server. Several processes co-occur in the server, 7

namely data visualization to confirm the correct sensors and data stream functioning. In addition, a 8

crop growth model (CGM) is running on the server, which will be powered by the collected data. 9

The simulations generated by the model will support agricultural decisions, obtaining, in advance, 10

insights about plant behavior considering several G×E×M scenarios. To assess the performance 11

of the proposed network to provide reliable data to the model, a greenhouse was equipped with 12

several sensors that collect plant, environment, and soil data (e.g., leaves number, air temperature, soil 13

moisture). The proposed network can provide real-time causal support toward advanced agricultural 14

practices, evolving from a data-driven approach to an integrative framework where context (G×E×M) 15

drives decision-making. 16

Keywords: Computer Vision; Decision Support System; Embedded Systems; Image Analysis; Preci- 17

sion Agriculture; Robotics 18

1. Introduction 19

Precision Agriculture (PA) based on continuous monitoring of plant growth is of 20

paramount importance. It involves taking into consideration the profound impact that 21

environmental conditions and agricultural management practices can exert on the perfor- 22

mance of a specific genotype (G×E×M). This understanding forms the foundations for 23

crafting robust decision support systems (DSS) aimed at optimizing input applications and 24

bolstering crop yields, profitability, and environment [1]. Digital phenotyping (DP) is a 25

cutting-edge application that combines advanced sensing devices (e.g., RGB/hyperspectral 26

cameras) and data analysis techniques (e.g., Artificial Intelligence (AI)) to diagnose plant 27

phenotypic traits (i.e., observable plant traits resulting from the performance of a genotype 28

in a specific environment), namely morphological [2], physiological [3], and phenologi- 29

cal [4] related to growth, health, and development [5]. Most of the literature describes 30

high-throughput phenotyping facilities that analyze model plants in expansive laboratory 31
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conditions (e.g., [6]), while low-cost field applications are limited [7]. Nevertheless, DP 32

data can be analyzed to identify trends and relations between phenotype and G×E×M 33

conditions, enabling more knowledgeable agronomic decisions. 34

Autonomous sensing systems such as robots and drones represent a great advance- 35

ment in the realm of data collection for field phenotyping, offering remarkable improve- 36

ments in terms of speed, repeatability, and accuracy [8]. However, beyond the technical 37

challenges like localization and path planning, there exist critical constraints related to data 38

management and analysis. Given the diverse array of phenotypic data sources and the 39

complexity of spatiotemporal scales involved, it becomes imperative to develop robust 40

data management techniques that not only preserve data relevance but also facilitate easy 41

access and analysis [6]. 42

Therefore, the establishment of resilient sensing networks is paramount to compre- 43

hensively characterize prevailing environmental conditions and seamlessly link them to 44

the collected phenotypic data. In this context, it is essential to accompany phenotypic data 45

with metadata, thereby promoting their reuse and ensuring interoperability in contexts 46

distinct from their original acquisition [9,10]. 47

Regarding data analysis, although DP uses advanced AI techniques that establish 48

genotype-phenotype relationships within G×E×M interactions [11,12], it has constraints 49

depicting the dynamics of these relationships. Some progress has been made in combining 50

DP and process-based models, optimizing data analysis through multi-scale frameworks. 51

Process-based models (a group of crop growth models (CGM)) simulate plant growth 52

and predict crop yield through differential equations that consider the mechanistic un- 53

derstanding of how a plant grows [13]. In this way, fundamental processes and their 54

interactions over time are represented (e.g., nutrient cycling, water fluxes). Thus, it is possi- 55

ble to assess the crop’s behavior in future climate and management scenarios, improving 56

decision-making [14,15]. 57

A process-based model can extract relevant traits using knowledge in advance, sim- 58

plifying the actual analysis systems (AI-based) [16–18]. Also, DP can be integrated into 59

a process-based model to estimate unknown parameters, replacing its subroutines and 60

describing complex processes (e.g., nitrogen dynamics [19]). 61

Yet, few studies present joint approaches, barely integrating phenotype data in ad- 62

vanced DSS [10]. To overcome this shortcoming, it is proposed a sensing network based on 63

the Internet of Things (IoT). The network comprises three modules: data collection, commu- 64

nication, and data management/analysis. The aim is to test the feasibility of cost-effective 65

sensors to collect high-throughput phenotypic and environmental data, establish methods 66

that guarantee data relevance and interoperability, and integrate data into a CGM. Thus, a 67

continuous swap of data will be created between the physical entities and the simulated 68

ones. This digital twin [20] approach can provide a real-time, spatiotemporal causal support 69

toward advanced PA practices, evolving from a data-driven approach to an integrative 70

framework, where G×E×M conditions are the driver of advanced decision-making. 71

2. Methods 72

Figure 1 describes the overall architecture of the proposed sensing network. 73
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Figure 1. Overall architecture of the proposed sensing network. Bold arrows represent physical
connections, dashed arrows represent wireless connections. CGM - Crop Growth Model.

To allow the network to be versatile, given the diversity of data sources, it is proposed 74

that a microprocessor be used to ensure uniform data transfer, regardless of the sensor’s 75

intrinsic communication protocol. In order to ensure robust spatiotemporal communication, 76

that can be transferred to an agricultural environment, the connection between sensors and 77

the microcontroller and from this to the microprocessor must be physical (e.g., USB). The 78

role of the microprocessor is to ensure the transfer of data to the server. In this case, the 79

transfer must be wireless (e.g., Wi-Fi). 80

On the server, the information is routed to its proper destination via the communication 81

broker. This is connected to the visual interface, allowing data visualization in real time. It 82

is also connected to the programming interface, which allows the conditional execution of 83

scripts, that results in actions such as sending data to the database or activating the CGM. 84

The programming interface must ensure that the data received is matched by the 85

relevant metadata. It must also deploy the appropriate processing operations. In this 86

case, numerical data can be distinguished from non-numerical. While the former can be 87

sent directly to the intended destination, the latter must be processed in order to extract 88

information from the raw data. For example, to extract phenotypic traits from images, 89

classic techniques (e.g., color thresholding) or more complex ones (e.g., Deep Learning 90

models) must be applied. 91

3. Results and Discussion 92

To test the proposed network a sensing network was installed in a greenhouse at 93

INESC TEC headquarters in Porto, Portugal. Figure 2 depicts the installation. 94
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Figure 2. Sensing network framework installed in a phenotyping greenhouse. Bold arrows represent
physical connections, dashed arrows represent wireless connections. PAR - Photosynthetically Active
Radiation, ETa - Actual evapotranspiration.

Stationary sensors are in charge of collecting environmental parameters (e.g., air 95

temperature), phenotypic traits (e.g., actual evapotranspiration) and soil parameters (e.g., 96

moisture). The choice of devices was based on cost-effective commercial solutions compati- 97

ble with the remaining network’s components. Also, some devices were developed from 98

scratch, namely a weighing lysimeter (Figure 3). 99

Figure 3. Custom weighing lysimeter. A - Components view: (1) 10 kg load cell, (2) HX711 amplifier,
(3) Custom hardware. B - Fully assembled prototype.

All the sensors share a common feature: they are connected to custom hardware 100

based on the RP2040 microcontroller, which allows the signals to be processed from the 101

sensors’ intrinsic protocol to the CAN protocol. This protocol was chosen because it 102

applies differential communication, which minimizes noise in the signal and allows for 103

a longer range between connections, a must in agricultural environments. The sensors’ 104

microcontrollers, "slaves", are connected to another microcontroller, the "master". This, in 105

turn, is connected via USB to the Raspberry Pi Zero W, which sends data requests to the 106

"master" microcontroller that distributes them to the respective "slaves". The Raspberry 107

is also connected to a camera (Raspberry Pi Camera) for imaging operations. The data 108

received by the Raspberry is sent to the server via Wi-Fi, according to the MQTT (Message 109

Queuing Telemetry Tracking) publish-subscribe protocol. 110
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The greenhouse is also equipped with robotics-assisted sensors. PixelCropRobot, a 111

mobile cartesian robot designed for phenotyping operations [21,22], was implemented 112

for autonomous phenotypic data collection. In addition to 2D RGB imaging operations, 113

the robot is equipped with a custom multispectral sensor and a LiDAR that allows the 114

measurement of leaf pigments - related to the physiological response to abiotic stresses - 115

and the canopy characterization, respectively. The robot is equipped with a Raspberry Pi 4 116

and, as mentioned above, the data is sent to the server via Wi-Fi, according to the MQTT 117

protocol. 118

This means that in both cases, the Raspberry Pi acts as a client and sends the mes- 119

sages to the MQTT Broker, who filters the messages by topic and distributes them to the 120

corresponding subscribers, which are defined in the scripts of the programming interface 121

or in the functions of the visual interface. By default, all the data received by the broker 122

is subscribed to a Python script that combines the relevant metadata, according to the 123

metadata guidelines of the DEMETER-AIM ontology, and then forwards it to the database. 124

The visual interface was developed using Node-RED (Figure 4). To ease real-time data 125

visualization (e.g., air temperature), some functions of the visual interface act as subscribers, 126

directly receiving the corresponding messages from the broker. Furthermore, through this 127

interface, it is possible to retrieve historical data (stored in the database) and trigger the 128

CGM. 129

Figure 4. Node-RED user interface. From left to right: Overview - tracking of the STICS simulations,
CO2 - CO2 concentration, Weather Station - air temperature and humidity, Radiation - PAR levels

The dynamic process-based model STICS (Simulateur mulTIdiscplinaire pour les Cultures 130

Standard) [23] was the chosen CGM. STICS is a daily time-step model with input variables 131

relating to soil, climate, and the cropping system. The model simulates the growth of 132

a defined genotype for which a physical medium and a crop management schedule are 133

defined. This model presents some features that fit with the sensing network designed, 134

namely its generality, robustness, and modularity, enabling its application to a wide range of 135

crops, climate conditions (even several ones), and the design of new modules or functions, 136

complementing the model. 137

To ensure that the proposed network provides reliable data to run STICS, continuous 138

data collection was monitored during a lettuce growing season (42 days), according to the 139

frequencies shown in Table 1. 140
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Table 1. Characterization of the data collected by the sensing network during the lettuce growing
season.

Sensor Quantity (n) Daily requests (n) Average size

Stationary

RPi Camera 1 24 10 MB
AS7341 2 24 400 B

HTU21D 2 24 170 B
SEN0159 1 24 120 B
Lysimeter 12 24 160 B
SEN0308 12 24 170 B

PixelCropRobot

RPi Camera 1 5 10 MB
Multispectral sensor 1 5 400 B

LiDAR 1 5 370 B

Given the daily time-step of STICS, it is likely that the dataflow shown in the Table 141

1 is enough to run the simulations. However, losses were detected during data transfer 142

to the server. These did not exceed 5% and were mainly due to interruptions in the Wi- 143

Fi connection. Although these are significant losses, since the aim is to keep the model 144

online continuously, they can be easily addressed. In particular, by reinforcing the Wi- 145

Fi connection or by creating a local database that stores the data in the event of Wi-Fi 146

interruptions. In line with Droutsas et al. [24], which proposes the integration of machine 147

learning models into a process-based model, the described network aims to enhance actual 148

data analysis systems and reduce modeling fine-tuning processes. Although further tests 149

are needed, the proposed sensing network has the potential to overcome the phenotyping 150

pitfalls identified by Saint-Cast et al. [10], namely the lack of common semantics and 151

thorough data exchange platforms. 152

4. Conclusions 153

This article presents an IoT-based sensing network for digital phenotyping. Associated 154

with this network, a DSS was developed, based on a CGM with the purpose of optimizing 155

agricultural practices. However, further testing is needed to validate the network fully 156

working under real-field conditions. In the future, it is intended to enhance the capabilities 157

of this approach. The model simulations will support decision rules, processed by an 158

actuator that will carry out a specific operation. Thus, a continuous swap of data will be 159

created between the physical entities and the simulated ones. This digital twin approach 160

will provide real-time, spatiotemporal causal support toward advanced Precision Agricul- 161

ture practices, evolving from a data-driven approach to an integrative framework, where 162

G×E×M conditions are the driver of advanced decision-making. 163
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