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Abstract: Software fault prediction (SFP) is vital for ensuring software system reliability by de-

tecting and mitigating faults. Machine learning has proven effective in addressing SFP challenges. 

However, extensive fault data from historical repositories often leads to dimensionality issues due 

to numerous metrics. Feature selection (FS) helps mitigate this problem by identifying key features. 

This research enhances the Whale Optimization Algorithm (WOA) by combining truncation selec-

tion with a single-point crossover method to enhance exploration and avoid local optima. Evalu-

ating the enhancement on 14 SFP datasets from the PROMISE repository reveals its superiority 

over the original WOA and other variants, demonstrating its potential for improved SFP. 

Keywords: software fault prediction; whale optimization; feature selection; machine learning; 

truncation selection. 

1. Introduction 

SFP greatly aids in producing high-quality software at a low cost by identifying 

fault-prone software modules [1]. Machine learning algorithms like decision trees, 

Bayesian learners, neural networks, support vector machines, and rule-based learning 

have shown promise, as have soft computing approaches like fuzzy computing, neural 

networks, evolutionary computing, and swarm intelligence [2]. 

Feature selection is frequently used to improve the SFP performance of machine 

learning (ML) algorithms, intending to increase data processing effectiveness and avoid 

algorithmic error [3]. This is often done using metaheuristic algorithms like genetic algo-

rithms and particle swarm optimization [4]. Among these metaheuristic approaches, the 

Whale Optimization Algorithm (WOA) has emerged as a promising choice for feature 

selection. However, WOA is susceptible to local optima trapping, a challenge in large 

datasets. 

This study addresses the local optima problem in WOA for feature selection in SFP 

by introducing the truncation selection method. Building on recent advancements in 

WOA variants [5], the research investigates the effectiveness of truncation selection 

within the context of WOA selection enhancement. This novel approach aims to improve 

WOA's performance in SFP, offering a potential solution to the local optima challenge. 

In summary, the research aims to contribute to the field of software fault prediction 

by leveraging metaheuristic algorithms, specifically WOA, in combination with the novel 

truncation selection method, building upon previous advancements to address local op-

tima challenges and enhance the effectiveness of machine learning algorithms in software 

fault prediction. 
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2. Review of Related Work 

A comprehensive review of literature related to Software Fault Prediction (SFP), 

Machine Learning (ML)-based SFP, feature selection, and Meta heuristic algorithms for 

software fault prediction is presented. This review aims to provide a foundational un-

derstanding of existing knowledge in this field to support the development and evalua-

tion of the proposed methodology. 

A study by [4] brings to the fore the traditional techniques used in SFP, encom-

passing software matrices, Soft Computing (SC), and Machine Learning (ML). While 

these approaches have significantly contributed to early fault prediction and the devel-

opment of dependable software, they still have limitations in predicting certain types of 

faults. Additionally, they might be time-consuming, particularly when applied to com-

plex software projects, leading to potentially diminished software testing effectiveness. 

Some examples of ML-based SFP techniques include; [6], [7], [8], [9], and [10]. 

Feature selection (FS) has become a significant step in data mining in general and 

machine learning in particular since it helps to clean data by removing noisy, irrelevant, 

and redundant features [11]. A study by [12] developed a novel FS called evolving pop-

ulations with mathematical diversification (FS-EPWMD), which uses arithmetic diversi-

fication among candidate solutions to avoid the local optimum. The guiding principle of 

populations evolving through crossover and mutation is the survival of the fittest. The 

results demonstrated that FS-EPWMD outperforms other models. 

Swarm intelligence (SI) is one of computational intelligence techniques that are used 

to resolve complicated problems [13].Swarm intelligence algorithms have demonstrated 

excellent performance in lowering the running time and addressing the FS problem. For 

instance, In order to solve the FS problem in the area of software fault prediction, [14] 

proposed the island model to improve the BMFO. The EBMFO with SVM classifier pro-

duced the best results overall. These findings show that the suggested model can be a 

useful predictor for the software fault issue. 

3. Proposed Work 

This section presents the research workflow and outlines the proposed methodology 

employed in the study, covering the enhancement of the algorithm and subsequent per-

formance evaluation. 

3.1. The Research Workflow 

The proposed model work in four phases namely; literature review, methodology, 

implementation and evaluation and results phase. The flow begins from literature review 

down to evaluation and results and each phase is represented with its activities. Figure 1 

represent the entire work flow of the model.  

In the first phase, we conducted a comprehensive literature review, exploring 42 ar-

ticles related to Software Fault Prediction (SFP), ML-based SFP, Feature Selection (FS), 

and Selection schemes. The Second phase highlighted the main components of the pro-

posed ML-based SFP model and the enhanced WOA. ML-based SFP handles prediction, 

while the enhanced WOA aims to enhance its performance. In the third phase, we im-

plemented the ML-based SFP model using Google Colab and replicated baseline work in 

the same environment for comparison. To classify FS problems, four well-known classi-

fiers were employed; Support Vector Machine (SVM), Decision Tree (DT), Linear Dis-

criminant Analysis (LDA), and K-Nearest Neighbors (KNN). In the final phase, the pro-

posed model’s performance was evaluated using the following metrics; Area Under 

Curve (AUC), precision, recall, F1 score, and accuracy. Cross-validation technique was 

also used to assess the performance of the model, where 80% of the dataset was used for 

training and 20% for testing.  



Eng. Proc. 2023, 5, x FOR PEER REVIEW  

 

Figure 1. The Research Workflow. 

3.2. The Proposed ML-based SFP Model 

This section details the research methodology for ML-based Software Fault Predic-

tion (SFP). Figure 2 presents the proposed model diagram which works in five stages; 

data collection, data pre-processing, feature selection, machine learning classifiers, and 

evaluation. 

Stage 1 involves gathering 14 datasets from the PROMISE dataset repository, with 

details provided in table 1. In Stage 2, data pre-processing was used to stabilized the 

dateset into a form suitable for training and validation. Stage 3 employs the Whale Op-

timization Algorithm (WOA) for feature selection, with a focus on improving its selection 

scheme using truncation selection. The stage 4 deploys four ML classifiers (DT, KNN, 

LDA, SVM) to predict software faults, enhancing the WOA's performance in feature se-

lection. In the final stage we evaluated the model using the evaluation metrics mentioned 

above. 

 

 

 

 

 

 

 

Figure 2. The Proposed Model. 

3.3 The Proposed Enhanced Whale Optimization Algorithm 

This work employs the Whale Optimization Algorithm (WOA) and enhances it by 

incorporating truncation selection to improve its selection scheme, as illustrated in Figure 

3. In Figure 3, we  addressed  the challenge of a stuck best solution in local optima, 

where we proposed a solution involving the combination of the Whale Optimization 

Algorithm (WOA), truncation selection, and a single-point crossover approaches. This 

enhancement primarily focuses on improving the selection part of WOA, where em-

ployed truncation selection. In the truncation selection process, individuals are ranked 

based on their fitness values, and only the best-performing individuals are chosen as 

parents for the next generation. This selection is governed by a primary truncation selec-

tion parameter known as the TRS threshold, which can vary between 50% and 10%. 
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It determines the percentage of the population that will serve as parents. Individuals falling below this threshold are eliminated 1 

as they are considered unfit for reproduction. The truncstion selection processes are indicated below. 2 

• The population is sorted based on each individual's evaluation scores. 3 

• The poorest-performing fraction of the population is removed. 4 

• The eliminated individuals are replaced with variations of individuals from the top-performing fraction, with each of the 5 

best individuals creating one offspring. These offspring subsequently replace one of the previously removed, 6 

lower-performing individuals in the population. 7 
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Figure 3: flowchart of the proposed enhanced WOA 28 
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4. Discussion of Results 30 

This section devoted to the presentation and of the experimental results. 31 

                                    4.1 Implementation Environment 32 

The work was implemented on Google Colab environment, using Python, Pandas 33 

and Tensor Flow libraries. 34 

4.2 Proposed Model Performance 35 

The proposed enhance WOA was evaluated by iteratively enhancing a population 36 

of candidate solutions using truncation selection method, crossover, and coefficient up- 37 

date procedures. The results obtained from the experiments revealed promising out- 38 

comes as shown in Table 2. 39 

In table 2, Ant-1.7 performed best with an accuracy of 0.834, while Lucene-2.2 scored 40 

the lowest at 0.534. Log4j-1.2 had the highest precision (0.789), Log4j-1.0 the highest recall 41 

(0.727), and  42 

Log4j-1.0 also achieved the highest F1 score (0.643) and AUC (0.790). Conversely, 43 

Camel-1.6 consistently had lower scores across these metrics. 44 

Table 2: Truncation based-WOA (TRBWOA) with SVM 45 

Datasets Accuracy Precision Recall F1  score AUC 
Ant-1.7 0.839 0.650 0.533 0.519 0.687 
Camel-1.2 0.706 0.600 0.102 0.239 0.604 
Camel-1.4 0.817 0.04 0.05 0.561 0.493 
Camel-1.6 0.877 0.433 0.224 0.440 0.605 
Jedit-3.2 0.763 0.900 0.528 0.680 0.699 
Jedit-4.0 0.922 0.800 0.386 0.421 0.734 
Jedit-4.1 0.730 0.875 0.486 0.513 0.819 
Jedit-4.2 0.978 0.0 0.500 0.500 0.892 
Log4j-1.0 0..740 0.433 0.661 0.322 0.736 
Log4j-1.1 0.829 0.725 0.625 0.625 0.705 
Log4j-1.2 0.902 0.902 0.950 0.948 0.500 
Lucene-2.0 0.767 0.300 0.873 0.518 0.676 
Lucene-2.2 0.580 0.650 0.850 0.701 0.850 
Lucene-2.4 0.806 0.588 0.753 0.740 0.849 

In table 3 we summarized the dataset performance. Ant-1.7 had the best accuracy 46 

(0.832), while Camel-1.6 scored lowest (0.878). Camel-1.4 achieved perfect precision (1.0), 47 

while Camel-1.6 had the lowest accuracy (0.333). Camel-1.2 had the highest recall (0.504), 48 

and Jedit-4.2 had the highest F1 score (0.500) and AUC (0.863). Camel-1.4 had the lowest 49 

AUC (0.517) and Camel-1.6 had the lowest F1 score (0.244) 50 

Table 3: Truncation based-WOA (TRBWOA) with KNN 51 

Datasets Accuracy Precision Recall F1  score AUC 
Ant-1.7 0.832 0.581 0.600 0.533 0.745 
Camel-1.2 0.715 0.656 0.504 0.275 0.623 
Camel-1.4 0.834 1.0 0.333 0.365 0.517 
Camel-1.6 0.878 0.333 0.438 0.244 0.605 
Jedit-3.2 0.781 0.946 0.523 0.647 0.863 
Jedit-4.0 0.874 0.500 0.387 0.463 0.850 
Jedit-4.1 0.777 0.827 0.481 0.540 0.732 
Jedit-4.2 0.846 1.0 0.450 0.500 0.801 
Log4j-1.0 0..919 0.767 0.725 0.400 0.766 
Log4j-1.1 0.815 0.950 0.777 0.867 0.625 
Log4j-1.2 0.864 0.902 0.433 0.949 0.743 
Lucene-2.0 0.902 0.444 0.876 0.381 0.812 
Lucene-2.2 0.766 0.756 0.629 0.812 0.600 
Lucene-2.4 0.618 0.657 0.753 0.690 0.749 

 52 

  53 



Eng. Proc. 2023, 5, x FOR PEER REVIEW  

4.3 Results Comparison 54 

Regarding AUC, Table 4 shows that TRBWOA performed better than TBWOA and 55 

all other variations when Decision Tree was applied. The TRBWOA did remarkably well 56 

in dataset like ant-1.7 with 0.803 while the Random-Based Whale Optimization Algo- 57 

rithm (RBWOA) had the worst performance with log4j-1.2 with 0.486 dataset. Table 4 58 

shows the results comparison of the models. 59 

Table 4: Comparison of results of WOA implemented with different selection schemes with DT clas- 60 

sifier in terms of AUC. 61 

Datasets LRBWOA RBWOA PBWOA TBWOA SUSBWOA TRWOA 

Ant-1.7 0.690 0.687 0.664 0.688 0.664 0.987 

Camel-1.2 0.635 0.609 0.604 0.606 0.612 0.608 

Camel-1.4 0.531 0.585 0.582 0.587 0.589 0.555 

Camel-1.6 0.593 0.575 0.575 0.567 0.576 0.679 

Jedit-3.2 0.803 0.744 0.735 0.736 0.722 0.955 

Jedit-4.0 0.569 0.560 0.571 0.550 0.567 0.655 

Jedit-4.1 0.569 0.641 0.634 0.625 0.620 0.855 

Jedit-4.2 0.782 0.718 0.701 0.725 0.730 0.665 

Log4j-1.0 0.777 0.644 0.640 0.653 0.657 0.638 

Log4j-1.1 0.562 0.605 0.713 0.704 0.712 0.777 

Log4j-1.2 0.597 0.486 0.643 0.660 0.627 0.925 

Lucene-2.0 0.504 0.560 0.499 0.496 0.762 0.751 

Lucene-2.2 0.533 0.650 0.528 0.551 0.507 0.654 

Lucene-2.4 0.642 0.634 0.615 0.634 0.536 0.761 

Regarding AUC, Table 5 shown that TRBWOA outperformed all other variations of WOA 62 

including the TBWOA when KNN was applied. The TRBWOA performed well in dataset like 63 

Jedit-3.2 with 0.863 while the linear ranked-based whale optimization algorithm (LRBWOA) had the 64 

worst performance with camel-1.6 with 0.474 dataset. Figure 4 shown the graphical presentation of 65 

the results compared. 66 

Table 5: Comparison of results of WOA implemented with different selection schemes with KNN 67 

classifier in terms of AUC 68 

Datasets LRBWOA RBWOA PBWOA TBWOA SUSBWOA TRBWOA 

Ant-1.7 0.657 0.657 0.682 0.691 0.704 0.745 

Camel-1.2 0.524 0.582 0.519 0.525 0.517 0.623 

Camel-1.4 0.555 0.499 0.511 0.517 0.511 0.517 

Camel-1.6 0.474 0.556 0.496 0.505 0.505 0.605 

Jedit-3.2 0.703 0.780 0.735 0.756 0.719 0.863 

Jedit-4.0 0.544 0.569 0.552 0.634 0.557 0.850 

Jedit-4.1 0.619 0.654 0.650 0.500 0.647 0.732 

Jedit-4.2 0.679 0.804 0.662 0.669 0.689 0.801 

Log4j-1.0 0.488 0.761 0.607 0.679 0.604 0.766 

Log4j-1.1 0.660 0.633 0.691 0.516 0.677 0.625 

Log4j-1.2 0.625 0.500 0.520 0.516 0.524 0.743 

Lucene-2.0 0.546 0.601 0.545 0.531 0.551 0.812 

Lucene-2.2 0.640 0.476 0.593 0.715 0.586 0.600 

Lucene-2.4 0.639 0.619 0.573 0.792 0.583 0.749 

 69 
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 70 

Figure 4: Comparison of results of WOA implemented with different selection schemes with KNN 71 

classifier in terms of AUC 72 

Conclusion 73 

Remarkably, the proposed work demonstrated significant advancements over the pre- 74 

vious work across all evaluated metrics and datasets. The results showcased the superi- 75 

ority performance of the proposed work, consistently outperforming the previous work 76 

in terms of various evaluation measures. These findings affirm the efficiency and effec- 77 

tiveness of the proposed approach in addressing the research objectives and achieving 78 

improved outcomes. 79 
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