

New tools for drug susceptibility testing against non-tuberculous mycobacteria

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO Clara M. Bento

PhD candidate

i3S – Instituto de Investigação e Inovação em Saúde, University of Porto (Host Targets of Infection group) Supervised by Tânia Silva and Maria Salomé Gomes The 2nd International Electronic Conference on Microbiology

Introduction

Mycobacterium abscessus (Mab)

- Most **significant** mycobacterial isolates associated with pulmonary infections, particularly in cystic fibrosis patients
- Most pathogenic rapidly growing mycobacteria
- Resistant to high chlorine levels, disinfectants, high temperatures and can form **biofilms**
- Suggested to be involved in **person-to-person transmission**
- Associated with intrinsic and acquired **resistance** to most antimycobacterial agents

Sánchez-Chardi et al, Microscopy and Microanalysis (2012)

Non-tuberculo		
Rapidly growing mycobacteria	Slowly growing mycobacteria	
M. chelonae-abscessus complex • M. abscessus subsp. abscessus	M. marinum M. ulcerans	M. tuberculosis complex
 M. abscessus subsp. bolletii M. abscessus subsp. massiliense M. chelonae M. fortuitum 	M. avium complex • M. avium • M. intracellulare • M. chimaera	M. leprae
M. smegmatis M. vaccae	M. haemophilum M. xenopi M. kansasii	
 True pathogens Opportunistic pathogens Saprophytes* 	M. simiae	
	M. terrae complex M. gordonae	

Johansen M. et al. Nat Rev Microbiol (2020)

Clara M. Bento | The 2nd International Electronic Conference on Microbiology

II Objective

Very long multi-drug therapy

In vitro vs in vivo discrepancy

Mab infection

Methods for drug susceptibility testing are sub-optimal

- High costs in terms of time, work and consumables
- Do not adequately mimic in vivo conditions

Antimicrobial peptides Ionic liquids Algae extracts

...

Complex in vitro models High-throughput screening New tools to combat antibiotic resistance and improve treatment outcomes

Find molecules with the better potential to be clinically effective

Fluorescence

Adapted from: fpbase.org/protein/mscarlet/

- Synthetic gene based on red fluorescent proteins (corals)
- Monomeric protein with high "quantum yield" (emits strong fluorescence, even at low concentrations)

Luminescence

Firefly luciferase or lux operon

III *M. abscessus* double-reporter strains

Did the transformation affect the characteristics of the bacteria?

Can the double-reporter strains be used for drug screening in a fast and reliable way?

IV Growth curves

Mab FF mScarlet Mab operon mScarlet Mab WT

The double-reporter Mab strains grow similarly to the non-transformed strain

CFUs **Optical density** 10¹⁰-10-10⁹ 1 OD₆₀₀ (1:10) CFUs/mL 108. 0.1-0.01 10 0.001 10⁶ 0 23 0 23 6 9 10 5 6 7 8 9 10 1 5 8 1 4 Time (days) Time (days)

The fluorescence and luminescence correlate with CFU counting

Clara M. Bento | The 2nd International Electronic Conference on Microbiology

The double-reporter Mab strains have a similar antibiotic susceptibility profile to the non-transformed strain

Antibiotic	Mab FF_mScarlet		Mab operon_mScarlet		Mab WT	
	MIC interval (μg/mL)	IC ₉₉ (μg/mL)	MIC interval (μg/mL)	IC ₉₉ (μg/mL)	MIC interval (μg/mL)	IC ₉₉ (μg/mL)
Amikacin	[8,32]	12.96	[8,32]	10.71	[8,16]	31.42
Linezolid	[4,32]	28.67	[2,8]	2.41	[4,32]	n.c.
Moxifloxacin	[2,8]	3.64	[2,4]	1.04	[2,8]	4.91
Clarithromycin	[0.5,1]	1.36	[0.5,1]	1.58	[0.5,1]	n.c.

The IC ₉₉ by luminescence (reporter strains)
correlates better with the MIC than the IC_{99}
by resorufin fluorescence (WT)
7 prime factor > 0.5 supports the use of the

assay for high-throughput drug screening

VI Infection of macrophages

The double-reporter Mab strains can infect mammalian host cells and the intracellular bacterial load can be assessed by fluorescence

Confocal 63x Scale: 10 µm

VII Infection of lung organoid-derived cells

VII Infection of lung organoid-derived cells

Mab infects around 20% of the alveolar cells

Scale: 50 µm

Mab FF_mScarlet – yellow Pro-SPC (AEC2) – red Nuclei – blue

Conclusions VIII

Mab FF_mScarlet

Mab operon mScarlet

The new double-reporter Mab strains are useful tools for drug discovery

- Luminescence can be used for determining the drugs' activity with high sensitivity \checkmark
- Fluorescence is a reliable measure of intracellular bacterial load \checkmark
- Maintain the characteristics of the non-transformed strain \checkmark

Image created with BioRender

Acknowledgements IX

Immune Regulation group

Margarida Saraiva

Rute Gonçalves

Joana Couto

Host Targets of Infection group <u>Tânia Silva</u> Maria Salomé Gomes Ana Carolina Moreira Ana Cordeiro Gomes Dina Cosme Gabriel Oliveira Óscar Fonseca Mariana Ribeiro

REMODEL

Marta Silva Anna Olsson

Universiteit Antwerpen

Paul Cos Kevin van Calster Tatiana Piller Linda de Vooght Davie Cappoen

U.PORTO

DOCTORAL PROGRAM

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE

ICBAS | INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAR SCHOOL OF MEDICINE AND BIOMEDICAL SCIENCES

rama Doutoral em Biologia Molecular e Celula

FRSIDADE DO PORTO

Molecular and Cell Biology

Research Foundation Flanders Opening new horizons

Fundacão

Funding: UI/BD/150830/2021 PTDC/BIA-MIC/3458/2020

i3S Platforms

Animal facility

Biosciences Screening

Translational Cytometry

Cell Culture and Genotyping

FWO – Research Foundation Flanders, grant nº 1S68720N H2020-WIDESPREAD-03-2018 REMODEL Project (GA No 857491)