

Sistema de Recomendación usando LightGBM y Filtrado Colaborativo

JIMÉNEZ-AVENDAÑO Alejandro - alejandro.jimeneza@uanl.edu.mx
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

Introducción

- ► El 35% de las compras en Amazon en 2019 fueron generadas por un sistema de recomendación de acuerdon con MacKenzie y ese mismo año de reportó una ganacia de \$87.4 billones de dólares en su último cuarto (Palmer, 2020).
- ▶ La primer conferencia AMC Recsys fue llevada a cabo en 2007 donde presentó un problema por Netflix que buscaba mejorar su sistema de recomendación en un 10% y dando un premio de 1 millón de dólares. En 2009 concluyó el reto y se presentó la solución en la conferencia. A partir del siguiente año se creo RecSys Challenge donde una empresa presenta un reto de sistemas de recomendación donde se premia y presenta la mejor solución con el fin de generar nuevas maneras de implenentar recomendaciones (Said, 2016).
- ▶ El trabajo toma los datos del RecSys Challenge 2022 que consiste las vistas y compras de ropa en una tienda en línea; se deben generar 100 recomendaciones de artículos por sesión. A partir del modelo ganador del reto se toma la base para generar las recomendaciones usando diferentes métodos de filtrado colaborativo y LightGBM (Zzh, Zhang, & Wentao, 2022).

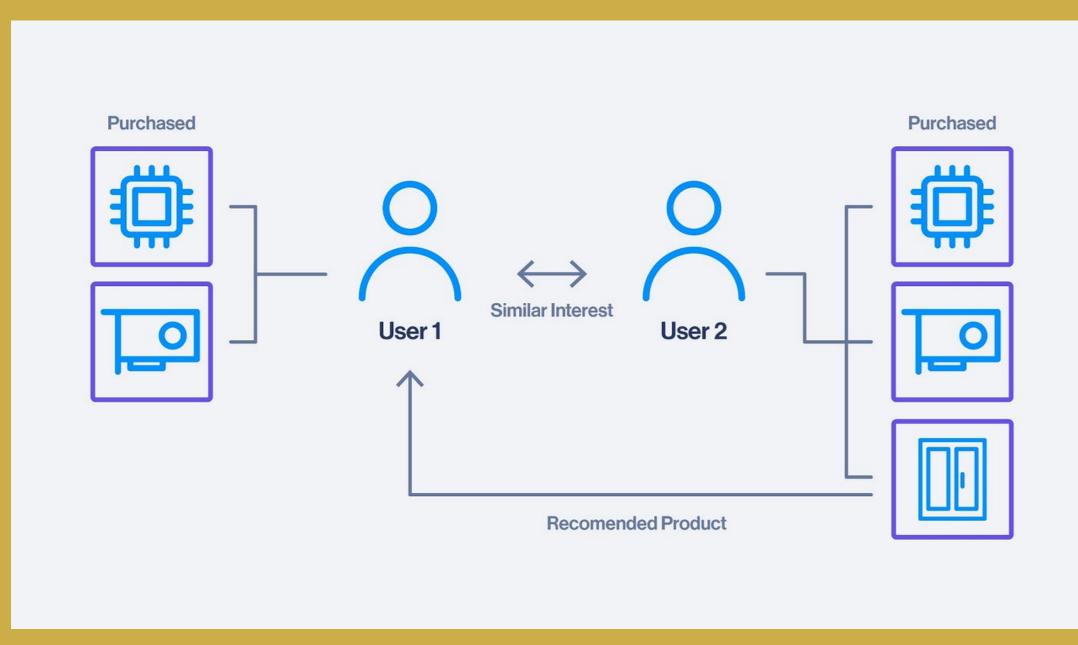


Figure 1:Sistema de Recomendación

Metodología

Modelo de Datos

- Los datos son dados por la competencia que consta de 18 meses de compras, siendo el último mes el solicitado a predecir. Consta de de 1.1 millones de sesiones con posibilidad de usar 1 millón de sesiones para entrenar el modelo y la evaluación se hace a 100,000 sesiones.
- La figura 2 muestra el modelo de datos de la sesiones. Se cuenta con las vistas de productos antes de comprar el producto final. Se tiene un catálogo de características por producto.

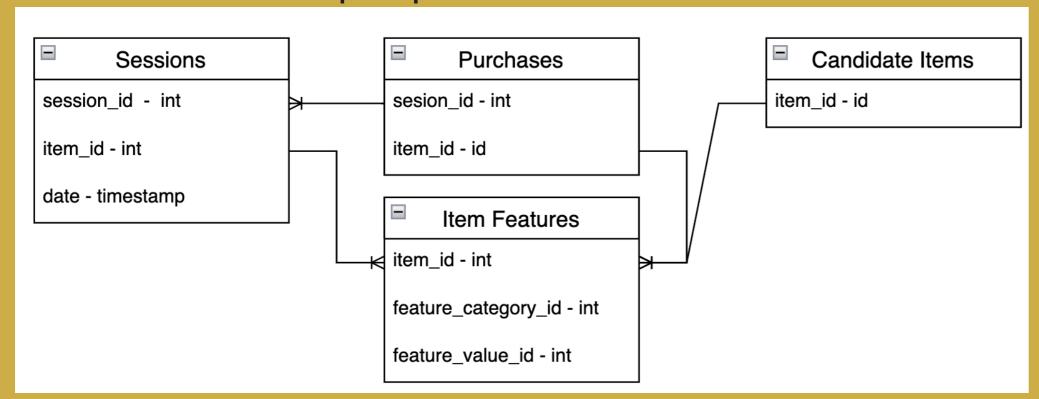


Figure 2: Modelo de datos de compras en línea.

Pipeline del Modelo

- La figura 3 muestra el proceso para obtener la recomendación:
- 1. Feature Prepare: se realizan algoritmos de filtración colaborativa que se realizan por sesión y por productos en general. Además se usan realizan otros métodos para caracterízar artículos cómo PCA o Word2Vec.
- 2. Retrieval: se busca reducir el número de productos a sugerir por sesión para no evaluar la cantidad de productos disponibles y mejorar el procesamiento.
- 3. Feature Transform: una vez reducido los posibles artículos a recomendar se le añaden carácterísticas hechas en la primera etapa.
- 4. Model Train & Inference: se entrena y se obtienen resultados a través de un Ranking LightGBM que permite evaluar los productos por grupos.

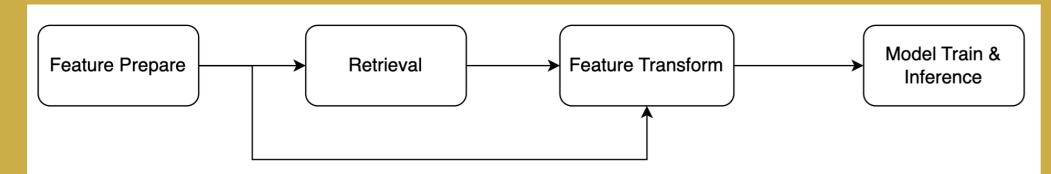


Figure 3:Pipeline para obtener recomendaciones

Metodología

Collaborative Filtering Similarity

Collaborative Filtering Similarity toma en cuenta la interacción de los artículos dentro de cada sesión. Toma en cuenta el tiempo entre dos artículos, la cantidad de artículos entre ambos artículos y las sesiones que tienen interacción los artículos.

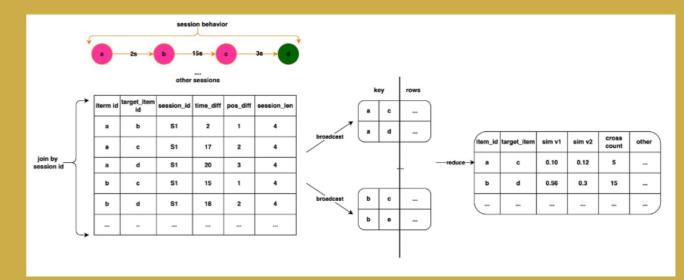


Figure 4:Proceso de Collaborative Filtering Similarity

Swing Algorithm

- El algoritmo consiste en ver la interacción de artículos pero a través de las sesiones. Toma en cuenta las sesiones totales de cada artículo, los artículos que ve el usuario en cada sesión y las sesiones donde ambos artículos interactuán.
- El resultado consiste en tomar la similitud de artículos pero basado en las sesiones y no la interacción entre ambos artículos. Sirve para obtener otra característica entre artículos.

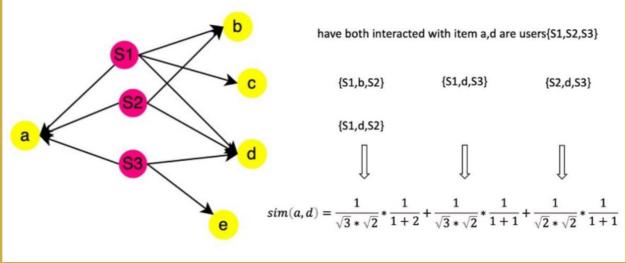


Figure 5:Proceso de Swing Algorithm

► LightGBM

Para general la recomendación usamos LightGBM que es un modelo basado en árboles. La ventaja sobre otros algoritmos basados en árboles es la escalabilidad, aprendizaje rápido y computación en paralelo.

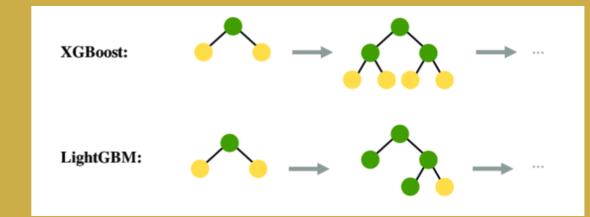


Figure 6:Estructura LightGBM

Resultados

Actualmente se reducen los posibles artículos a recomendar, dado que son cerca de 5000 artículos que el usuario puede comprar, con 5 artículos vistos por sesión en promedio y 100 mil sesiones a recomendar; se puede llegar a 2,500 millones de filas. La lista a sugerir se reduce en promedio a 1000 artículos por sesión dando alrededor de 500 millones de filas. La reducción de la lista se hace mediante los métodos de Collaborative Filtering Similarity, Swing Algorithm y generales para asegurar un mínimo de 100 recomendaciones.

Conclusiones

- ➤ Se busca actualmente agilizar el proceso de guardado de las tablas resultantes para los modelos, dado que guardar 500 millones de datos es un proceso lento.
- Se incorporarán otros algoritmos al modelo buscando mejorar la métrica de evaluación Mean Reciprocal Rank. El ganador obtuvo un resultado de 0.261; se busca replicar ese resultado.

Referencias

Palmer, A. (2020, January). *Amazon soars after huge earnings beat.* https://www.cnbc.com/2020/01/30/amazon-amzn-q4-2019-earnings.html. (Accessed: 2023-8-2)

Said, A. (2016). A short history of the RecSys challenge. *AI Mag.*, *37*(4), 102–104.

Zzh, Zhang, W., & Wentao. (2022). Industrial solution in fashion-domain recommendation by an efficient pipeline using GNN and lightgbm. In *RecSys challenge 2022*. New York, NY, USA: ACM.