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Introduction

Invasive ductal carcinoma (IDC) constitutes Ca rCI no ma Recu rre nce The XGBoost model with hyper parameters

approximately 80% of breast cancer cases in the n estimators = 400 and max depth = 3 had the best

United States. After treatment, there is a 3-15% ROha N Ka UShika n’ Sind hu G ha Nnta performance on the testing dataset, with accuracy

chance that IDC will recur. 0.84, recall 0.29, and precision 0.89. This indicates
International Electronic Conference on Cancer 2024 that a higher number of simpler decision trees allows

Forecasting the recurrence of a patient’s IDC as — for best model performance on our dataset. Our
early as possible is critical for long term survival Methodology results are promising in that they indicate that by

[2]. XGBoost and Random forest, both tree based models, are efficient on datasets with a small number of reducing skew in the dataset or by mFIudmg more -
features such as the one used in this study. Additionally, both models have a Feature Importance Analysis samples, model perfqrmance can be |mprc?ved. While
Previously, histopathological analyses were used to tool that offers interpretability of the model’s prediction process. we were able to predict IDC recurrence using
diagnose cancers and assess prognosis. These machine learning Wlt!’\ high preus!on, the recall yvas
methods are often unable to integrate multiple Differential mMRNA expression analysis: T-tests used to calculate t-values for each gene’s mRNA expression muc.h lower than c.:Ie5|ra.bI.e, especially for.a medical
data types or handle large amounts of genomic between cohorts. The 10 with lowest p-values (all <0.05) were selected as features. Rows with null values setting. Howev.er, identifying ~23% of patient cancers
data. were removed. An XGBoost and Random Forest model were trained and used for prediction. as recurrent using data collected 11 years prior to

recurrence while maintaining high precision speaks
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raining an er parameter (max_de - Threshold = 0.4, AUC = 0.56 irmi 1 1 1
to predict IDC recurrence with high accuracy, e . ostimators) e auning. L 2006 J —— Threshold = 0.5, AUC = 0.56 similar results, but we believe that incorporation of
. 4 ! ) ) e o F e 02 - e — 09 AUC — gea clinical and imaging data will drastically improve
preC|5|On; and recail. ( Upsampled l [ Validation Set models with highest performance Threshold = 0.8, AUC = 0.50 - -
Training Set L - | | combinatonof et o | Threshold = 0.9, AUC = 0.50 model performance [4], eventually resulting in a
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Dataset | J et ze 00 ¥ ~ ~ — ~ 1 desirably low false negative rate.

TCGA's Breast Invasive Carcinoma study were
downloaded from cBioPortal [3].

decision trees, XGBoost learns sequentially while validation set for threshold values between
Random Forest trains decision trees independently. 0 and 1 through ROC curves.

False Positive Rate
Patient genomic and clinical samples collected in _ , Future Research
While they are both based on an ensemble of Random Forest model’s performance on

The dataset contained 1084 patient samples, of
which 856 samples were non-recurrent, 84 were

recu rrent, and 144 Were nOt CategoriZEd- Validation Accuracy of Random Forest model with respect to max_depth and n_estimators
: : The XGBoost model performed best on The Random Forest model performed e astmat: 5 | [ 4 Lo e

Genomic data was profiled about 11 years, on . . . . : é el O
the testing dataset with hyper best on the testing dataset with hyper 080 1| % n_estimators: 200 —_ e B

average, before IDC recurred. parameters max_depth = 3 and parameters max_depth = 5 and By g |

Distribution of Recurrent and Disease Free Samples n_estimators = 400 (accuracy = 0.84, n_estimators = 50 (accuracy = 0.75, recall . _ _

recall = 0.29, precision = 0.89). The = 0.36, precision = 0.78). The prediction > Sample d|§ease free fleft) and cancer re’current (right) patient
prediction threshold used was 0.5. threshold used was 0.3. tissue slide images from TCGA’s BRCA study

Disease F o R Our future work includes the incorporation of tissue

Isease Free Confusion Matrix Confusion Matrix
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slide images for IDC recurrence prediction. This
would result in a multimodal approach integrating
multiple data types.
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