IECB 2024 Conference

The 4th International Electronic **Conference on Biosensors** 20-22 May 2024 | Online

Pretreatment Methods Enhance Cancer Detection Biosensor Performance via Optimized Deposition of Multilayer Chitosan and **Hyaluronic Acid Films**

Gabriela Pereira de Freitas^{*1}, Estela Kerstner Baldin^{1,2}, Eduarda Baggio Paglia¹, Hernandes Faustino de Carvalho³, Jorge Vicente Lopes da Silva², Marisa Masumi Beppu¹ g197699@dac.unicamp.br

1 Department of Materials and Bioprocesses Engineering/School of Chemical Engineering/University of Campinas, Brazil 2 Renato Archer Information Technology Center /Campinas, Brazil

3 Department of Cell Biology /Institute of Biology/ University of Campinas, Brazil

INTRODUCTION & AIM

- Multilayer films incorporating chitosan (CHI) and hyaluronic acid (HA) offer significant potential for cancer detection.
- The functionalization of electrodes produced by additive manufacturing is an innovation in biosensors, and the study effective film deposition is crucial for the ideal tor performance of the biosensor.

RESULTS & DISCUSSION

Topography and roughness

The investigation of plasma pretreatment and a PEI film precursor aims to enhance adhesion and surface properties, boosting biosensor selectivity and sensitivity for oncological disease detection.

METHOD

Figure 1. AFM topography images of dense coated electrodes obtained at 5 μ m x 5 μ m analyzed area and average roughness (Ra).

Hydrophilicity

Figure 2. Contact angle of dense Ti6Al4V electrodes pre-treated and functionalized with CHI/HA coating.

Cell adhesion

(CHI/HA)3.5

Plasma/PEI/(CHI/HA)3.5

Figure 3. .Microscopic images of DAPI-stained PC-3 cells adhered to dense Ti6Al4V electrodes pre-treated and functionalized with CHI/HA coating.

CONCLUSION

Plasma pretreatment and PEI prelayer deposition provided:

- cell adhesion;
- coating roughness;
- Did not affect the wettability of the coating.

REFERENCES/ACKNOWLEDGEMENTS

[1] Neto, J.B.M. Rocha et al. Int. J. Biol. Macromol. 158, 197–207, 2020. [2] Neto, J.B.M. Rocha et al. Appl. Surf. Sci. 486, 508-518, 2019. [3] Panjwani, B. et al. J. Mech. Behav. Biomed. Mater. 4, 953–960, 2011.

To the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC). To FAPESP for financial support (Grant n. 2020/12980-3, n. 2023/01660-6).

https://sciforum.net/event/IECB2024