

Development of a sensor platform for the determination of the protein FKBP12

Martina Tozzettia, Cosimo Bartolinia, Piero Procaccia, Stefano Menichettia, Gabriella Caminatia,

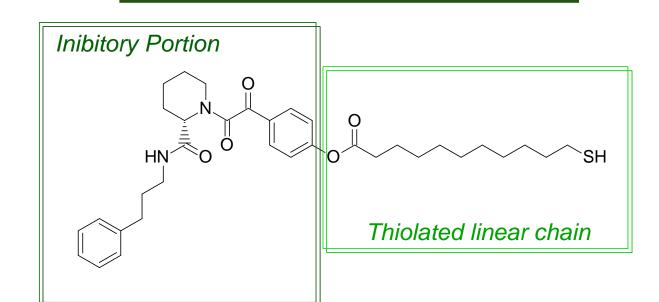
^a University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, (FI), Italy.

^b CSGI, via della Lastruccia 3-13, 50019, Sesto Fiorentino, (FI), Italy.

PROJECT

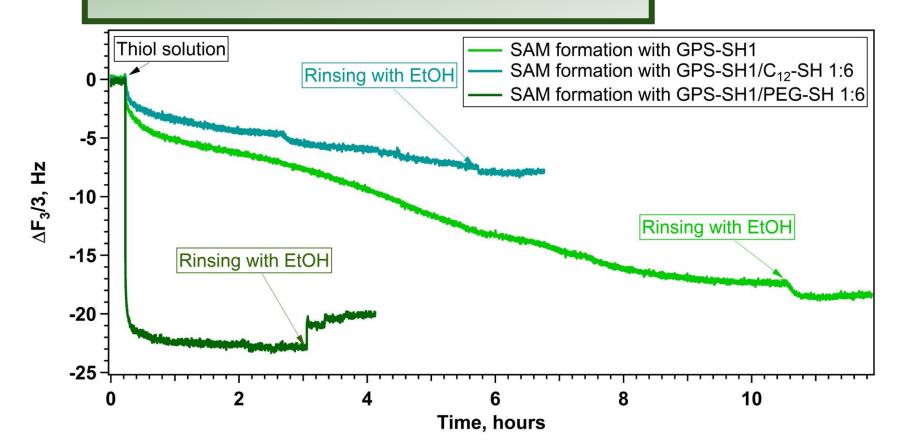
biosensors

The aim of the research activity is the design, the assembly and the development of a device for rapid and efficient determination of the concentration of the FKBP12 protein in biological fluids (CSF and blood). FKBP12 is a peptidyl-prolyl cis-trans isomerase with a well-established role in cancer, neurodegenerative processes and post-surgical anti-rejection response.¹

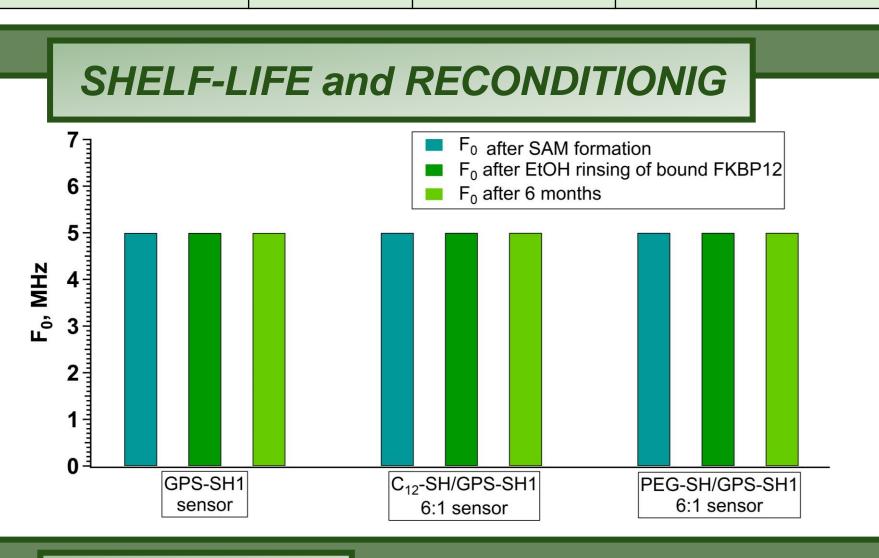

PROPOSED PLATFORM

FKBP12

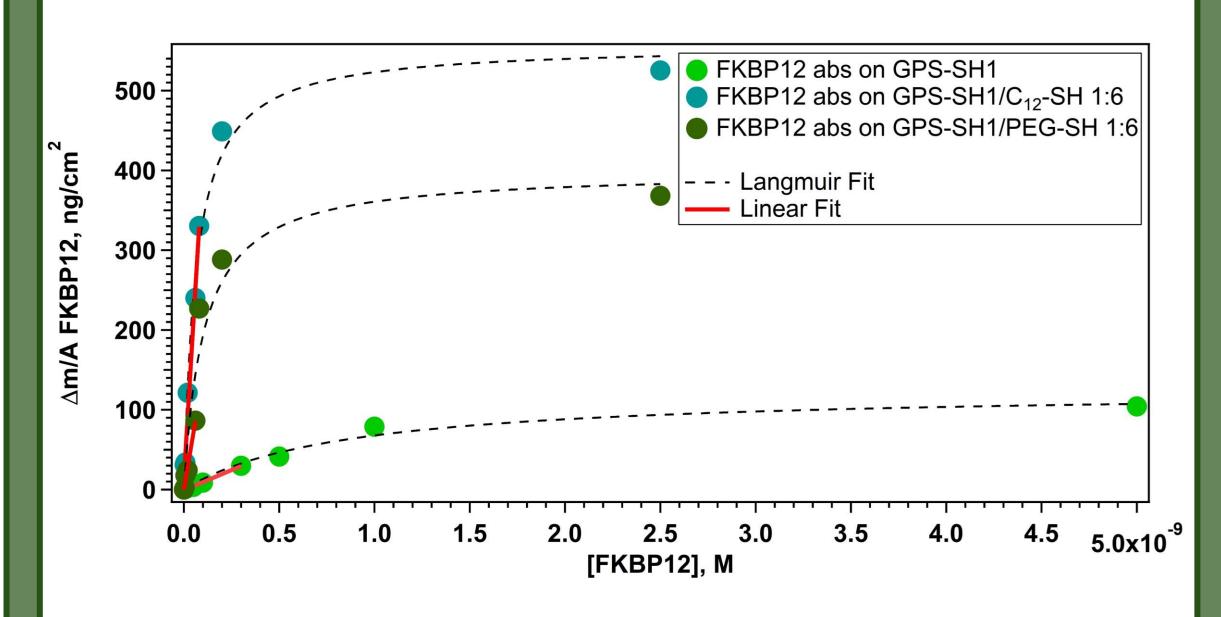
Self-assembled monolayer (SAM) with GPS-SH1 receptor and specific antifouling molecular scaffold (C_{12} -SH; PEG-SH).


QCM support in Au.

GPS-SH1 receptor



The GPS-SH1 receptor was designed and synthesized to specifically bind FKBP12 and to enable its direct detection in biological samples².


SAM CHARACTERIZATION

	∆m/A (ng/cm²)	#molec _{GPS-SH1} (x10 ¹³)	A/molec (Ų)	Thickness (Å)
GPS-SH1	322.9	25.6	31	19
GPS-SH1/C ₁₂ -SH 1:6	135.6	4.13	32	16
GPS-SH1/PEG-SH 1:6	321.7	1.41	0.92	25

DETECTION OF FKBP12

	Δ m/A (ng/cm ²)	#molec _{FKBP12} (x10 ¹³)	Linear Range (M)	R ²	LOD (pM)
GPS-SH1	104.3	0.403	2 x 10 ⁻¹¹ 3 x 10 ⁻¹⁰	0.99654	16.2
GPS-SH1/C ₁₂ -SH 1:6	525.3	2.03	4 x 10 ⁻¹² 8 x 10 ⁻¹¹	0.98576	8.29
GPS-SH1/PEG-SH 1:6	368.3	1.42	4 x 10 ⁻¹² 6 x 10 ⁻¹¹	0.98592	6.50

Interfering proteins characteristic of the biological samples to be analyzed, such as BSA and IgG, were studied and their signal was found to be negligible, thus demonstrating the selectivity and specificity of the system.

REFERENCES

ACKNOWLEDGEMENTS

Funded by the European Union - NextGenerationEU - NationalRecovery and Resilience Plan, Mission 4 Component 2 - Investment 1.5 - THE - Tuscany Health Ecosystem -ECS00000017 - CUP B83C22003920001.

[1] G. Caminati et al., **2021**, International Publication Number WO2021/124269A1.

[2] M. R. Martina et al., *J Med Chem.* **2013**, 56, 1041-1051.