The 3rd International Electronic Conference on Processes

29-31 May 2024 | Online

Designing and Fabrication of Heterojunctions of Thiosemicarbazones and

Nanoparticles in search of their Medicinal Activity

Ekhlakh Veg^{1,2}, Seema Joshi², Tahmeena Khan^{1*}

•¹Department of Chemistry, Integral University, Lucknow-226026, U.P., India

• ²Department of Chemistry, Isabella Thoburn College, Lucknow-226007, U.P., India

•Corresponding email: tahminakhan30@yahoo.com

INTRODUCTION

- ➤ Thiosemicarbazone (TSC) derivatives and their complexes have emerged as versatile medicinal agents [1]. However the use of large-sized compounds in drug delivery poses major challenges, including *in vivo* instability, poor bioavailability, poor solubility, poor absorption in the body, issues with target-specific delivery and probable adverse effects of drugs [2].
- Metallic nanoparticles when conjugated with TSCs can enhance the medicinal properties due to change in their morphological characteristics [3].

Where $R_1,R_2 = H/Aryl/Alkyl$ Substituent

Fig. 1 Preparatory scheme of Schiff bases

METHODOLOGY

- ➤ The studies included in the paper were taken from leading databases like PubMed, Web of Science and Scopus.
- ➤ Keywords like fabrication of nanoparticles, functionalized nanoparticles, thiosemicarbazone, and conjugated nanomaterials were used to find out the relevant studies.

Functionalization of Nanoparticles

- Functionalization is the process of using various methods to modify the surface of nanoparticles (NPs) in order to increase target selectivity and decrease potential nanotoxicity. A number of methods, such as covalent or non-covalent conjugation and the use of linker molecules, are used to join the molecules together [4].
- The NPs can be coated with different species for functionalization like glutamic acid, and chitosan for conjugation with TSCs [5].

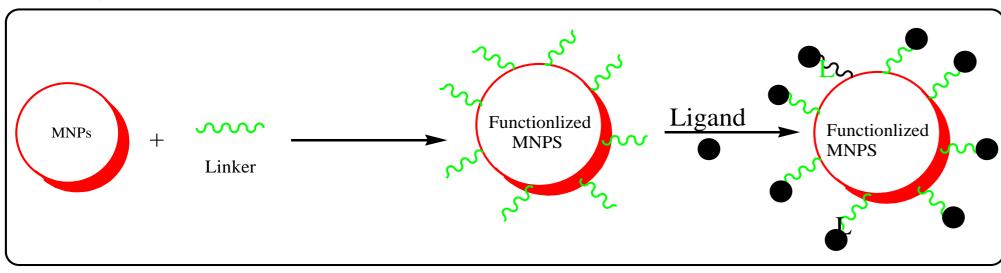


Fig. 2 Functionalization of NPs

Nano functionalized TSCs and their anticancer activity

S. No.	MNPs	Functionalized MNPs	Cell line	IC ₅₀ value (μg/ml)	Reference
1	CuO	CuO@Glu/TSC	MCF-7	133.97	DOI: 10.1007/s10876-021- 02187-1
2	NiO	NiO@Glu/TSC	MCF-7	298.33	DOI: 10.1007/s10876-021- 01995-9
3	Fe ₃ O ₄	Fe ₃ O ₄ @Glu/BTSC	A549	189.15	DOI: 10.34172/aim.2022.126
4	Ag	Ag@Gln/TSC	Colon cancer cells	88	DOI: 10.1038/s41598-024- 54344-x
5	Co ₃ O ₄	Co ₃ O ₄ @Glu/TSC	AGS	107.5	DOI: 10.1007/s13205-020- 02230-4

Some Recent MNPs Drug Carriers

S. No.	Drug	Therapeutic activity	Nanocarrier (core@shell)
1	Ciprofloxacin	Anti-infective agents (antibiotic)	FeO @poly(vinyl alcohol)-g- poly(methylmethacrylate)
2	Doxorubicin	Antineoplastic agent	FeO @gelatin
3	5-Fluorouracil	Antimetabolites, anticancer drug	FeO @ethylcellulose
4	Gemcitabine	Antimetabolites, cancer chemotherapy	FeO @poly(ethylene glycol)
5	Dopamine	Catecholamine neurotransmitter, Parkinson's disease	FeO @silica (diatom)

Characterization of TSC functionalized NPs

S. No.	Parameter	Characterisation Technique
1	Shape and size	UV-Visible spectroscopy, Dynamic light scattering, Atomic force microscopy, Scanning electron microscopy, Transmission electron microscopy
2	Charge and Surface Chemistry	Zeta Potential, Fourier Transform Infrared Spectroscopy, X-ray photoelectron spectroscopy
3	Composition	Energy dispersive X-ray, X-ray diffraction, Electron dispersive X-ray spectroscopy
4	Crystal structure	High-resolution transmission electron microscopy, Electron diffraction, X-ray diffraction
5	Thermal stability	Thermo gravimetric analysis, Differential thermal analysis

CONCLUSION

- The challenge of NPs in biomedicine is their potential for immune recognition and clearance through a variety of mechanisms, such as phagocytosis by macrophages.
- ➤ Strategies to minimize immune recognition and clearance of nanoparticles, such as surface modification and targeting, are necessary for effective biomedical applications.

REFERENCES

- 1. Siddiqui, E. J., Azad, I., Khan, A. R., & Khan, T. (2019). Thiosemicarbazone complexes as versatile medicinal chemistry
- agents: a review. *Journal of drug delivery and therapeutics*, 9(3), 689-703.

 2. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., ... & Shin, H. S. (2018).
- Nano based drug delivery systems: recent developments and future prospects. *Journal of nanobiotechnology*, *16*, 1-33. 3 Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. *Dose-Response*, *20*(2), 15593258221088709
- 4,Oak, U., & Khare, T. (2022). Nanoparticle Functionalization: Approaches and Applications. In *Nano-Strategies for Addressing Antimicrobial Resistance: Nano-Diagnostics, Nano-Carriers, and Nano-Antimicrobials* (pp. 157-181). Cham: Springer International Publishing.
- 5.Bhattarai, S. R., Kc, R. B., Kim, S. Y., Sharma, M., Khil, M. S., Hwang, P. H. & Kim, H. Y. (2008). N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging. *Journal of nanobiotechnology*, 6(1), 1-9.