A New Post-Harvest Process of Upgrading *Coffea canephora* (Robusta) Coffee Beans

Water pollution reduction; Process water and wastewater reduction.

Sensory evaluation

Post-harvest processes

- Wet washing requires large volumes of water, produces large volumes of highly polluted effluent.
- Operates only during harvest season. Wastewater expensive and difficult to clean, involves chemical, physical processes.
- Wastewater, if not treated, affects local waterways (fauna/flora), other industries and human health.

Other post-harvest processes

- Dry processing end product generally considered to be of low quality.
- Honey mostly small scale production
- Aerobic and anaerobic small scale and individual preferences
- Experimental adding enzymes; adding micro-organisms expensive and not readily available to all.

Coffee tree in full bloom Masaka district, Uganda. photograph taken July 2024

Coffee cherries not yet ripe

Robusta Revisited

Robusta tree with cherries - Uganda

Coffee bean cherry anatomy

Post-harvest processing

Climate and environmental fluctuations

- Drought scarce sources of water competition for water rationing.
- Flooding scarce clean water sources

The new process operates in batches

- Avoidance of source pollution.
- Process reduction by 70 to 80% compared to wet washing.
- Wastewater reduction by the same factor.
- Energy source: solar power.
- Easy to use no skills required.

Analyses of bacteria, fungi and yeast in raw/green coffee beans detected by ISI Food Protection (Aarhus, Denmark) – using – Targeted metagenomics via Next Generation Sequencing (NGS)

- Over 40 different species of bacteria were detected, including Lactobacillus, Citrobacter species.
- Over 30 different fungi were found, including Aspergillus, Saccharomyces species.
- Aspergillus sp. can produce aflatoxins, so we analysed the processed coffee beans for aflatoxin B1, B2, G1 and G2.

Measurement of aflatoxins; Eurofins/Steins analyses

	Result
Aflatoxin B1	<0.1µ/kg
Aflatoxin B2	<0.1µ/kg
Aflatoxin G1	<0.1µ/kg
Aflatoxin G2	<0.1µ/kg
Sum of measured aflatoxins	<0.4µ/kg

Different stages of processed robusta coffee beans. Left raw/green beans; middle, processed beans; right, roasted beans. (Photograph reproduced with permission from Bioroots ApS. Gilleleje, Denmark)

Flavour Radar of the Robusta Coffee by Coffee Quality Institute (Zurich, Switzerland).

Fragrance/Aroma	8.08
Flavour	8.00
Balance	8.17
Bitter/Sweet	8.17
Salt/Acid	8.17
Mouthfeel	8.08
Aftertaste	8.08
Uniformity	10.00
Clean cup	10.00
Overall	8.83
Total score	85.58

Sensory Evaluation conducted by Innova Consult (Aarhus, Denmark).

- Sample A: Roasted robusta coffee beans at different stages
- Evaluation of freshly ground beans
- Evaluation of the brewed coffee:
- Scent during brewing
- Scent after brewing
- Cupping flavour
- Mouthfeel: long aftertaste, mouthwatering (when you drink water right afterwards, the water tastes sweet)

Sensory profile

• There is a current issue, in different scientific cycles, about the detection of the acidity of the coffee!

Pilot plant design

Discussion and conclusion

- The scale of the process can be adapted to the needs of each group of coffee farmers.
- Comparative cupping between natural upgraded Arabica and washed Arabica.
- Potential impact of the process on smallholder and cooperative incomes.