IOCC 2024 Conference

The 4th International Online Conference on Crystals

18-20 September 2024 | Online

As^v and As^{III} removal from water with different iron oxyhydroxides nanosorbents

Fantasia A^{a,b,c}, Mameli V^{a,b}, Sanna Angotzi M^{a,b}, Perra F^{a,b}, Secci F^{a,b}, Enzo S^d, Cannas C^{a,b,c}.
^aDepartment of Chemical and Geological Sciences, University of Cagliari, Cagliari, Italy
^bNational Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
^cConsorzio AUSI, Palazzo Bellavista Monteponi, Iglesias, Italy
^d Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy

Sorbent

INTRODUCTION & AIM

Arsenic pollution in surface water and groundwater is a worldwide problem originated by dissolution of arsenic from soil, mainly due to anthropogenic activities. Due to the possibility to form inner-sphere complexes, the high surface-to-volume ratio and, therefore, the high density of active sites (-OH groups), nanopowders of iron oxides and oxyhydroxides show a high affinity for arsenate and arsenite species in wide pH ranges and pollutant concentrations, which is particularly promising also due to their low production costs and low toxicity.

RESULTS & DISCUSSION

	Sorbent	рН	C ₀ As [∨] (mg L ⁻¹)	C ₀ As ^{III} (mg L⁻¹)	T (min)
	Aka	2, 3 , 4, 6, 8	100	100	960
	Fer	2, 3 , 4, 6, 8	100	100	960
As	Ferox	2, 3 , 4, 6, 8	100	100	960
(77)					

Aller

METHOD

Sorbent	Solvent	Precursor	Precipitating agent	pH adjusting	Thermal treatments
Aka	Water	FeCl ₃ 6H ₂ 0	NaOH solution (pH = 10)	pH = 2 with HCl 37%	98 °C for 4 h
Fer	Water	Fe(NO ₃) ₃ 4H ₂ O	KOH solution (pH = 8)	-	-
Ferox	Water	FeCl ₂ 4H ₂ 0	NaOH solution (pH = 8)	pH = 2 with H ₂ O ₂ 30%	-

Sorbent	m (mg)	pH ₀	C ₀ As ^v (mg L ⁻¹)	Adsorption capacity (%)	q _e (mg _{inq} /g _{sorb})
Aka	0.0258	3	100	99	41.7
Fer	0.0256	3	100	55	20.6
Ferox	0.0254	3	100	92	39.1

ICP-OES

analysis

	Sorbent	m (mg)	рН _о	C ₀ As ^{III} (mg L ⁻¹)	Adsorption capacity (%)	q _e (mg _{inq} /g _{sorb})
L	Aka	0.0254	3	100	81	33.2
	Aka	0.0254	8	100	83	33.8
			0	100	00	20.0

	Fer	0.0254	3	TUU	98	39.2
Г	Fer	0.0251	8	100	97	38.3

CONCLUSION

Akaganeite is the most promising sorbent in the whole pH range for As(V), while ferrihydrite is the best sorbent for As(III). Results on feroxyhyte proved its suitability as a sorbent for As(V) as a promising alternative to akageneite, due to its straightforward and quick synthesis process.

FUTURE WORK / REFERENCES

HRTEM is in progress for feroxyhyte, together with further removal tests for both feroxyhyte and ferrihydrite to investigate the effect of the initial As concentration, contact time, ionic strength, and the presence of competitors.

1) M. Sanna Angotzi, V. Mameli^{*}, A. Fantasia, C. Cara, F. Secci, S. Enzo, M. Gerina, C. Cannas. As ^(III, V) Uptake from Nanostructured Iron Oxides and Oxyhydroxides: The Complex Interplay between Sorbent Surface Chemistry and Arsenic Equilibria. Nanomaterials 2022, 12, 326.

2) Cornell, R.M.; Schwertmann, U. The Iron Oxides; Wiley: New York, NY, USA, 2003; Volume 39, ISBN 9783527302741.

https://iocc2024.sciforum.net/

