IOCC 2024 Conference

The 4th International Online Conference on Crystals

18-20 September 2024 | Online

The influence of the counterion in the behavior of a *trans*-diacetate dysprosium complex with a semirigid macrocycle

Cristina González-Barreira,^{1,*} Julio Corredoira-Vázquez,^{1,2,3} Matilde Fondo,¹ Ana M. García-Deibe,¹ Jesús Sanmartín-Matalobos^{1,3}

¹ Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain ² Phantom-g, CICECO – Aveiro Institute of Materials, Department of Physics, University of Aveiro, 3810-193 – Aveiro, Portugal ³ Institute of Materials (iMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain *cristina.gonzalez.barreira@rai.usc.es

INTRODUCTION

We have shown that $[Dy(L)(CH_3COO)_2]NO_3 \cdot 2H_2O(1)$ can behave as a single-molecule magnet under an optimal field of 2000 Oe, as well as a secondary luminescent thermometer.¹ Hence, we would like to know how changing the counterion could influence these interesting properties. Thus, we will firstly study the novel complex $[Dy(L)(CH_3COO)_2]BPh_4(2)$, and the differences between these two crystal structures.

SYNTHESIS

 $[Dy(L)(CH_3COO)_2]BPh_4$ was obtained by a template method, as shown in the scheme below.

Scheme 1. Reaction scheme to obtain 2.

The crystal structure of **2** comprises $[Dy(L)(CH_3COO)_2]^+$ cations, in two slightly different conformations, and BPh_4^- anions. Figure 1

STRUCTURAL CHARACTERIZATION

shows the superimposition of the cations and single X-ray diffraction.

Figure 1. Ellipsoid view of two superimposed units of $[Dy(L)(CH_3COO)_2]^+$ and a BPh₄⁻ in their vicinity, as occurring in the unit cell of **2**.

COMPARISON WITH ANOTHER SPECIES

The conformation found for both $[Dy(L)(CH_3COO)_2]^+$ units of **2** are also closely similar to that present in the crystal structure of **1**, as Figure 2 shows. In all these cations, their N_6O_4 coordination polyhedra can be described by a distorted tetradecahedron geometry, according to calculations made with SHAPE.² Hirshfeld surfaces shown in Figure 3 illustrate the differences between the crystal packings of **1** and **2**.

CONCLUSION

The presence of such a polar counterion as nitrate in **1** allows the connection of one of its acetate ligand by classic H bonds through two neighboring water molecules. In contrast, the hydrophobic counterion of **2** is contacting with the cationic complex $[Dy(L)(CH_3COO)_2]^+$ by means of C-H··· π interactions.

REFERENCES

¹ J. Corredoira-Vázquez, C. González-Barreira, A. M. García-Deibe, J. Sanmartín-Matalobos, M. A. Hernández-Rodríguez, C. D. S. Brites, L. D. Carlos, M. Fondo, *Inorg. Chem. Front.*, **2024**, *11*, 1087-1098.
² M. Llunell, D. Casanova, J. Cirera, J. M. Bofill, P. Alemany, S. Álvarez, M. Pinsky, D. D. Avnir, SHAPE v1.1b, Barcelona, 2005.

https://iocc2024.sciforum.net/